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Abstract

The growth of modern internet is enabled by large-scale, highly available, and resilient dis-
tributed systems. These systems allow data to be replicated globally while ensuring avail-
ability under failures. To ensure reliability and availability in the presence of failures, the
systems rely on intricate distributed protocols. Yet in practice, bugs in the implementations
of these distributed protocols have been the source of many downtimes in popular dis-
tributed databases. Ensuring the correctness of the implementations remains a significant
challenge due to the large state space.
Over the years, many techniques have been developed to ensure the correctness of the im-
plementations ranging from systematic model checking to pure random exploration. How-
ever, a developer testing the implementation with current techniques has no control over
the exploration. In effect, the techniques are agnostic to the developer’s knowledge of
the implementation. Furthermore, very few approaches utilize the formal models of the
protocols when testing the implementations. Efforts put into modeling and verifying the
correctness of the model are not leveraged to ensure the correctness of the implementation
To address these drawbacks, in this thesis, we propose 3 new approaches to test distributed
protocol implementations - Netrix, WaypointRL, and ModelFuzz. The first two tech-
niques - Netrix andWaypointRL are biased exploration approaches that accept developer
input. Netrix is a novel unit testing algorithm that allows developers to bias the exploration
of an existing testing algorithm. A developer writes low-level filters in a domain-specific
language to fix specific events in an execution that are enforced by Netrix. WaypointRL
improves on Netrix to accept high-level state predicates as waypoints and uses reinforce-
ment learning to satisfy the predicates. WaypointRL is effective in biasing the exploration
while requiring less effort from the developer. Using popular distributed protocol imple-
mentations, we show that additional developer input leads to effective biased exploration
and improved bug-finding capabilities. The third technique - ModelFuzz - is a new fuzzing
algorithm that bridges the gap between the model and the implementation of the protocol.
We use model states as coverage to guide input generation that are then executed on the
implementation. We showwith three industrial benchmarks that existing coverage notions
are insufficient for testing distributed systems and that using TLA+ model coverage to test
implementations leads to discovering new bugs.
Keywords: Formal methods, Distributed Systems, Testing, Reinforcement Learning, Unit
testing, Fuzzing.
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Resumé

La croissance de l’internetmoderne est rendue possible par des systèmes distribués à grande
échelle, hautement disponibles et résilients. Ces systèmes permettent de répliquer les don-
nées à l’échelle mondiale tout en garantissant leur disponibilité en cas de défaillance. Pour
garantir la fiabilité et la disponibilité en cas de défaillance, les systèmes s’appuient sur des
protocoles distribués complexes. Pourtant, dans la pratique, des bogues dans la mise en œu-
vre de ces protocoles distribués ont été la source de nombreux temps d’arrêt dans les bases
de données distribuées les plus populaires. Garantir la correction des implémentations reste
un défi de taille en raison du vaste espace d’états.
Au fil des ans, de nombreuses techniques ont été mises au point pour garantir la correction
des implémentations, allant de la vérification systématique desmodèles à l’exploration aléa-
toire. Cependant, un développeur qui teste l’implémentation avec les techniques actuelles
n’a aucun contrôle sur l’exploration. En effet, les techniques ne tiennent pas compte de
la connaissance qu’a le développeur de l’implémentation. En outre, très peu d’approches
utilisent les modèles formels des protocoles lors des tests de leurs implémentations. Les
efforts consacrés à la modélisation et à la vérification de la correction du modèle ne sont
pas mis à profit pour garantir la correction de l’implémentation.
Pour remédier à ces inconvénients, nous proposons dans cette thèse trois nouvelles ap-
proches pour tester les implémentations de protocoles distribués - Netrix, WaypointRL, et
ModelFuzz. Les deux premières techniques - Netrix et WaypointRL - sont des approches
d’exploration biaisées qui prennent en compte l’input du développeur. Netrix est un nou-
vel algorithme de test unitaire qui permet aux développeurs de biaiser l’exploration d’un
algorithme de test existant. Un développeur écrit des filtres de bas niveau dans un langage
spécifique au domaine pour fixer des événements spécifiques dans une exécution qui sont
appliqués par Netrix. WaypointRL améliore Netrix en acceptant des prédicats d’état de
haut niveau comme points de passage et utilise l’apprentissage par renforcement pour sat-
isfaire les prédicats. WaypointRL est efficace pour orienter l’exploration tout en exigeant
moins d’efforts de la part du développeur. En utilisant des implémentations de protocoles
distribués populaires, nous montrons qu’une contribution supplémentaire du développeur
conduit à une exploration biaisée efficace et à des capacités améliorées de recherche de
bogues. La troisième technique - ModelFuzz - est un nouvel algorithme de fuzzing qui
comble le fossé entre le modèle et la mise en œuvre du protocole. Nous utilisons les états
du modèle comme couverture pour guider la génération d’entrées qui sont ensuite exé-
cutées sur l’implémentation. Nous montrons, à l’aide de trois benchmark industriels, que
les notions de couverture existantes sont insuffisantes pour tester les systèmes distribués et
que l’utilisation de la couverture du modèle TLA+ pour tester les implémentations entraîne
la decouverte de nouveaux bogues.
mots-clés: Méthodes formelles, systèmes distribués, tests, apprentissage par renforcement,
tests unitaires, Fuzzing.
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Chapter 1

Introduction

Distributed systems are the backbone of the current Internet infrastructure. Large online
services such as banking, e-commerce, and blockchain systems utilize distributed databases
which are powered by a conjunction of distributed systems - such as failure detection,
recovery and consensus systems. To ensure correct behavior, reliability, and availability
under failures, distributed databases rely on functionally correct distributed protocol im-
plementations. However, developing correct implementations remains a challenge due to
the complex nature of the underlying distributed algorithms.
Consider an example of a concrete distributed system - a cloud file storage service like
Dropbox or Amazon S3. Customers interact with the service by uploading and retrieving
files. To enable this behavior, Dropbox needs to store, access, and modify exabytes of data
in different nodes across the globe, all the while ensuring that data is not lost, corrupted, or
incorrectly overwritten. To ensure these properties, Dropbox relies on a host of distributed
protocols. Among them, a key protocol is consensus. A consensus protocol ensures that
updates to the data (read and write operations) are ordered the same way across different
nodes in the system. Therefore, a customer accessing data from different locations will
always receive the same output. In the absence of a consensus protocol, different nodes
storing data may end up in different states - such as one deleting a file and the other storing
it. In Dropbox like services, the codebase that implements the consensus protocol forms
the core of critical codebase. As a consequence, bugs in the implementation of a consensus
protocol are expensive and lead to loss of core functionality such as losing customer files.
To ensure correct behavior while tolerating failures, distributed protocols rely on complex
rules, use many message types, and synchronization mechanisms leading to a very large
state space. Put together, the protocol descriptions (models) require complex proofs of
correctness.
However, practical implementations of the distributed protocols are highly prone to bugs
[Gao+18]. The primary reason is the complex nature of the protocols themselves. The com-
plexity of protocols that enable services like Dropbox stems from 2 aspects - (1) asynchrony
- nodes progress independent of each other due to the lack of a global time [She15], and
(2) fault tolerance - nodes can crash and stop communicating. For example, let us con-
sider a bug in the distributed key value store (RedisRaft 1) that we encounter in one of our

1https://github.com/redislabs/redisraft
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evaluations. A participating node crashes (fails) during an execution and restarts in a stale
state. Upon restarting, the node communicates with other nodes to reconcile the stale state.
Until the state is updated, the node remains unavailable to clients. However, due to a bug
in handling conflicting state update messages that are received asynchronously from dif-
ferent nodes, the node crashes again. This process repeats making the node permanently
unavailable.

Practical implementations also exacerbate the problem of state explosion (large state space).
The state space increases to accommodate for numerous additional implementation details
which are typically abstracted away in the models. For example, implementations need to
keep track of active peers, the messages that have been sent but not acknowledged, time-
outs, etc. These additional parameters lead to a much larger state space. Naturally, the
implementations are prone to human programming errors where the nodes do not behave
as expected. Coupled with the state explosion problem, efficiently finding bugs in an im-
plementation becomes non-trivial. The solution is to develop techniques to traverse the
state space more efficiently which results in improved reliability and correctness of the
implementation.

Research landscape

Over the years, techniques have been developed to specify and check the correctness of
the algorithms. Domain specific languages such as Promela, Dafny, TLA [Hol97; Jab+21;
Jab+21; Lam02] allow protocol designers to describe and verify the models with systematic
exploration of the model’s state space. Similarly, systematic exploration techniques are
applied to explore the state space of the implementation. Tools such as SAMC, MODIST,
etc [BK08; Lee+14; SBG11; Yan+09; Wan+23] explore the space of all possible message inter-
leavings to certify the absence of bugs. However, systematic exploration techniques applied
on the model are disconnected from the efforts on the implementation.

Other tools such as Ivy, Disel, Grove [Pad+16; SWT18; Sha+23] rely on proof techniques
to prove the correctness of distributed models. Motivated by the success of these proof
techniques on the models, tools such as IronFleet, Verdi, etc [Cha+21; Haw+15; Wil+15]
have been developed to formally verify implementations. However, the verification efforts
do not scale and the verified implementations take a performance hit.

Both classes of techniques - model-checking and proof-based - are characterized by strong
guarantees of finding all bugs or proving their absence. However, despite many advances,
the techniques scale poorly. Exploring all possible message inter-leavings and fault sce-
narios to cover the large state space remains impractical for most distributed protocol im-
plementations. Similarly, verified implementations (using proof-based techniques) fail to
satisfy the performance requirements for running in production and therefore, largely re-
main unused. Moreover, bugs can still lurk in the interfaces between verified and unverified
components [Fon+17]. These drawbacks have been partially addressed by new techniques
such as symbolic exploration [PDG23] and model-based testing approaches [Wan+23].

Alternatively, randomized testing techniques have been developed to address the draw-
backs of systematic exploration techniques. These techniques test implementations with
randomly generated inputs. However, randomized techniques provide weak or no guaran-
tees of finding bugs or proving their absence. More widely-used randomized techniques
rely on pure randomness to explore the state space. Jepsen [Kin22] being the canonical
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example of such an approach. Jepsen randomly injects network partitions and heals them
throughout the execution. However, Jepsen is unreliable in reproducing any bugs found.

In general, randomized testing tools have been surprisingly effective in finding bugs in
production systems [MN18]. Other techniques control the randomness to provide prob-
abilistic guarantees of visiting a state [Kul+18; CMN16], leverage partial order reduction
techniques to efficiently sample random traces [KMO19; Dra+20] or use standard fuzzing
loops to mutate inputs and increase coverage [Che+20; Gao+23; MOP23; Win+23].

Operationally, both techniques - systematic exploration and randomized testing - require
running the distributed system for many iterations. Each iteration results in an execution
characterized by a sequence of partially ordered events occurring at each node. While with
randomized testing, we effectively sample a random execution in each iteration, with sys-
tematic exploration, the execution is carefully constructed to reach a new state. Due to the
large state space, covering it entirely in a reasonable number of iterations remains infeasi-
ble. Furthermore, all current techniques are fully automatic i.e. once the initial parameters
are set, the developer has no control over the exploration of the state space.

Testing using biased exploration

An alternative testing approach, that we pursue in this thesis, would be to bias the explo-
ration. There are two concrete motivations for biased exploration. First, we know from
an existing corpus [Gao+18] of bugs that the root cause of bugs is a small set of problem-
atic behaviors. Biased exploration allows us to explore executions where these problematic
behaviors always occur. Second, the developer of a specific implementation knows which
executions utilize untested parts of the codebase. Additionally, biased exploration will ei-
ther find bugs in the untested code or increase the confidence when no bugs are found.

To understand the impact of biased exploration, let us consider a concrete example. Existing
corpus of bugs indicates that bugs are more likely when nodes crash during an execution.
Therefore we first bias exploration to include crashed nodes. To isolate the exploration
further, let us suppose that the developer has not tested for scenarios when at least 2 nodes
have crashed. Once the implementation has been testedwith an effective biased exploration
technique, two outcomes are possible. First, the exploration does find a bug - improving
the robustness of the implementation, or second, no bugs are found - the developer has
increased confidence in the correctness of the module handling node crashes.

With existing tools, bugs found in implementations are hard to reproduce (bug reproducibil-
ity problem). To enable reproducing bugs, all sources of non-determinism (e.g. timeouts,
random choices, etc..) in the implementation needs to be controlled. However, certain
sources of non-determinism are hard to control. For example, time in each process is a
source of non-determinism that is hard to control. Processes maintain independent clocks
that need to be synchronized in order to reproduce any bug.

Biased exploration automatically addresses the problem of bug reproducibility. When the
exploration is targeted, the size of the state space explored is reduced and therefore bugs
are more likely to be reproduced. Consider the earlier example where we only explore
traces where 2 nodes have crashed, any bugs found are more likely to be reproduced with
biased exploration (due to the smaller state space) when compared to an unbiased automatic
exploration technique that is less likely to introduce the same two crashes.

– 3 –



Finally, there is a scarcity of techniques that bridge the gap between a model of the proto-
col and the implementation. Extensive research has been dedicated to modeling distributed
protocols and to verifying the correctness of the models. Very few testing techniques lever-
age these models to ensure the correctness of the implementation. By bridging the gap, de-
velopers can check the correctness of their implementation by ensuring conformance with
the model.
To summarize, ensuring the correctness of distributed protocol implementations is critical.
However, due to the large state space, systematic exploration techniques do not scale in
practice. Therefore, randomized testing have been more successful in exploring the state
space to find bugs. Yet, current techniques only allow for fully automatic exploration with-
out any control over the exploration. Our solution - biased and targeted exploration - gives
the developer control while addressing the bug-reproducibility problem. Additionally, we
identify that there is a lack of techniques to bridge the gap between models and implemen-
tation.

Contributions

In this thesis, we introduce three new randomized techniques to test the implementation
of a distributed algorithm - Netrix, WaypointRL and ModelFuzz - with the goal of ad-
dressing the drawbacks of existing techniques mentioned in the previous section. We show
that the techniques are useful in finding new bugs and replicating known bugs in many
popular distributed protocol implementations that are used in production. The first two,
Netrix and WaypointRL, are biased exploration techniques. They allow the developer to
test an implementation in a constrained state space described by specific scenarios. Then,
with ModelFuzz, we directly leverage protocol models to test implementations. Model-
Fuzz is a randomized testing approach where the input generation is guided by coverage
over abstract protocol models.
All three techniques rely on an instrumentation to enforce specific executions on the imple-
mentation. The instrumentation is similar to other existing testing techniques and consists
of two components - (1) control over the network to decide which messages to deliver and
(2) control over the nodes to inject failures and restarts. In what follows, we provide a brief
overview of the three techniques.

Netrix - Unit tests for Distributed Systems

Netrix 2 is a new testing framework along with a Domain Specific Language (DSL) that
allows a developer to bias the exploration of an existing exploration algorithm. The devel-
oper, using the DSL, describes constraints that are then enforced by Netrix on the underly-
ing exploration algorithm. Concretely, the developer describes a sequence of filters which
fixes the relative order of certain events in every execution. For the remaining events, their
order is decided by the underlying exploration algorithm. Given a sequence of filters, the
degree of constraints on the execution explored is defined by the number of filters. More

2https://github.com/netrixframework/netrix
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filters enforce more constraints on the exploration. Effectively, the developer operates on a
spectrum. On the one end, the exploration is driven entirely by the underlying exploration
algorithm when no filters are specified. On the other end, with a larger number of filters,
the developer can constrain the exploration to a single specific execution.
Netrix’s filters define an abstractmonitor that simulates the network used by the processes
to communicate. We formalize the semantics of the filter and characterize the expressivity
of Netrix’s filters.
Our concrete implementation of the Netrix monitor consists of a runtime that captures
all events of the distributed system and therefore, simulates the network. The events here
correspond to message send, message receive or other internal events at each node. For
each event, the filters decide the corresponding action to perform on the network. The
filters are of the form If(condition).Then(action) where condition is a predicate over
the state of the system and the current event and action corresponds to a network action.
For example, consider the rule

If(IsMessageOfType(t)
.And(IsMessageTo(p))
.And(NumberOfMessagesDeliveredGreaterThan(n/2)))

.Then(DropMessage())

The Netrix runtime, in this case, will enforce that in every execution the process p receives
only n/2 messages of type t. The state of themonitor, in this case, keeps track of howmany
messages has been delivered so far in the execution. In general, the DSL allows developers
to define arbitrary predicates as conditions to be used in filters. For a given event, if none
of the filters apply, then the underlying exploration algorithm defines the corresponding
network action.
In Netrix, a set of filters is analogous to traditional unit tests - they enforce specific paths of
the execution that can be checked for correctness. Netrix’s unit tests are the first regression
testing framework for distributed systems. They ensure that the behavior of the protocol
implementation remains unchanged across different versions.
To demonstrate the effectiveness of Netrix’s biasing capabilities, we evaluate 3 industrial
benchmarks - Tendermint 3, Etcd 4 and BFT-Smart 5. We showwith 34 unit tests that Netrix
filters are effective in biasing exploration. Additionally, we find 4 new bugs and reproduce
3 known bugs with improved bug-reproducibility.

WaypointRL - Biased exploration with Reinforcement Learning

Existing testing techniques sample executions in each iteration independent of prior sam-
ples. In other words, they are effectively “blind”. Even with Netrix, while the operational
semantics allows a developer to enforce specific events in an execution, each execution
is sampled by the underlying exploration algorithm independent of prior executions. The

3https://github.com/tendermint/tendermint
4https://github.com/etcd-io/raft
5https://github.com/bft-smart/library
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next two techniques we present in this thesis - WaypointRL and ModelFuzz “learn” from
prior iterations and choose executions conditioned on prior samples.
We model state-space exploration as a reinforcement learning (RL) problem and propose
two new Q-learning based exploration algorithms - BonusMaxRL and WaypointRL6. The
former, BonusMaxRL, is an unbiased and fully automatic exploration algorithm with a
strong incentive to maximize coverage of the state space. We show that it significantly out-
performs other random exploration techniques and matches the state-of-the-art learning
based approach. The latter, WaypointRL is a biased exploration algorithm. WaypointRL
allows developers to augment the exploration with waypoints (akin to Netrix filters) - that
are then used to provide additional rewards.
An RL agent interacts with the participating nodes in both the algorithms, steering and
guiding the exploration based on the rewards provided. At each step in an iteration, the
agent observes the current state and decides a network action (or injects a failure) that leads
to the next state. In BonusMaxRL, the reward is highest when a new state is observed and
diminishes with the number of visits. However, in WaypointRL, this diminishing reward
is augmented with an explicit positive reward when a waypoint is reached. For example,
in a consensus protocol, a waypoint would be a successful leader election or a commit of a
client request. Notice that waypoints operate at a higher abstraction and unlike Netrix’s
filters, are not concerned with individual message contents. As a consequence, we reduce
the developer’s effort to effectively bias the exploration.
To demonstrate the effectiveness of the approach, we evaluate both the algorithms on
3 industrial benchmarks - RedisRaft 7, Etcd 8 and RSL 9. With 26 different waypoint se-
quences, we show that WaypointRL is effective in biasing exploration. Furthermore, we
find 13 new bugs with WaypointRL and demonstrate that biasing leads to improved bug-
reproducibility.

ModelFuzz -Model-Coverage based Fuzzing for Distributed Systems

To describe Netrix’s filters orWaypointRL’swaypoints, we provide recommendations that
derive predicates from the model. In doing so, we partially address a drawback of current
testing techniques - disconnectedness between the model and the implementation. With
ModelFuzz, we bridge this gap more explicitly.
ModelFuzz is a novel fuzzing algorithm for testing distributed systems that leverages the
formal models of the protocols. ModelFuzz uses the coverage information of the model
to guide the exploration of the state space of the implementation. Similar to WaypointRL,
ModelFuzz “learns” from prior samples to generate inputs that are more likely to lead to
new states. We take as input, an implementation and its corresponding TLA+ model. In
each iteration we execute an input first on the implementation, then run the subsequent
execution on themodel. When run on themodel, we collect information of the states visited
and use this information to generate new inputs.

6https://github.com/zeu5/dist-rl-testing
7https://github.com/redislabs/redisraft
8https://github.com/etcd-io/raft
9https://github.com/Azure/RSL
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To implement ModelFuzz, we overcome the challenge of describing deterministic inputs
to distributed systems, design ways to simulate models on single executions and develop a
framework to instrument and run the whole distributed system.

To demonstrate the effectiveness of ModelFuzz, we instrument and run the algorithm on
2 industrial benchmarks - Etcd 8 and RedisRaft 7, and 1 micro benchmark. We show that
using model coverage to guide exploration outperforms traditional notions of coverage -
line, branch and trace coverage. We uncover 15 new bugs in the 2 industrial benchmarks
and reproduce a synthetic bug.

Summary

Overall, in this thesis, we introduce new randomized techniques to test implementations
of distributed protocols. The techniques address the drawbacks of existing state-of-the-art
testing tools. Specifically,

• We introduce a unit-testing framework Netrix accompanied by a DSL with the aim
of biasing exploration and therefore improving bug-reproducibility. Netrix unit tests
reuse the developer’s knowledge of the implementation.

• We develop two new learning-based exploration algorithmsWaypointRL and Bonus-
MaxRL. WaypointRL automates biased exploration. Additionally, the developer’s
effort is minimized to providing high-level state predicates as opposed to low level
filters.

• We bridge the gap between the model and the implementation by introducing a new
fuzzing approach ModelFuzz that leverages the state coverage information of the
model to guide input generation to test the implementation.

Publications

The results of Netrix and WaypointRL have led to successful publications listed below.

1. A Domain Specific Language for Testing Distributed Protocol Implementations
Cezara Dragoi, Srinidhi Nagendra, Mandayam Srivas
NETYS 2024

2. Reward Augmentation in Reinforcement Learning for Testing Distributed Systems
Andrea Borgarelli, Constantin Enea, Rupak Majumdar, Srinidhi Nagendra
OOPSLA 2024

The results of ModelFuzz are under submission.

1. Model-guided Fuzzing of Distributed Systems
Ege Berkay Gulcan, Burcu Kulahcioglu Ozkan, Rupak Majumdar, Srinidhi Nagendra
Under submission
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Tools

All three techniques have been implemented using the Go programming language and are
open sourced.

1. Netrix - github.com/netrixframework/netrix
2. WaypointRL - github.com/zeu5/dist-rl-testing
3. ModelFuzz - github.com/zeu5/raft-fuzzing, github.com/zeu5/redisraft-fuzzing

Thesis organization

The rest of the thesis is organized as follows,

• Chapter 2 introduces a formal model of distributed systems. Subsequently, we elab-
orate on concrete protocols that we test.

• Chapter 3 describes the first technique Netrix where we introduce a new domain
specific language to describe unit tests for distributed systems. The unit tests allow a
developer to constrain the execution while utilizing existing randomized exploration
algorithms to search in the constrained space.

• Chapter 4 first elaborates onmodelling distributed systems as reinforcement learning
agents before diving into the mechanism of biased exploration. With Netrix, we
rely on the developer to define the boundaries of the constrained state space. We
overcome this manual effort and show how shaping rewards allows us to learn to
explore only the constrained state space.

• Chapter 5 introduces a new fuzzing mechanism ModelFuzz, to connect the protocol
model specified in TLA+ to an implementation. By doing so, ModelFuzz allows us
to utilize the modelling effort to test an implementation.

• Finally, Chapter 6 concludes with a summary of contributions and lists possible future
directions of research.
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Chapter 2

Modelling Distributed Systems

The specific problem that we are addressing in this thesis is - ensuring the correctness of
an implementation with respect to a model of a distributed system. Before presenting our
solutions, in this chapter, we describe the abstract model of a distributed system. Themodel
presented does not make any assumptions about the concrete distributed systems, its state,
and transition rules. We then elaborate on one particular concrete distributed system -
consensus systems - using two examples, Raft and PBFT.

2.1 Abstract Distributed systems

In this thesis we are concerned with testing asynchronous message passing distributed sys-
tems. Asynchronous, meaning time at each node progresses independently of other nodes.
Message passing, meaning nodes share information by sending and receiving messages.
In this subsection, we will describe a formal model to capture executions of asynchronous
message passing distributed systems. We will use the terms nodes and processes inter-
changeably.
In a distributed system, a set of n processes P communicate by exchanging messages. We
define a message as a tuple m ∈ (P × P × VM × TM) where VM is the set of all possible
contents of a message and TM is the set of all possible message types. M is the set of all
possible messages. A given subset of messages M ⊆ M, is a union of messages intended
for a process p - M [p]= (P × {p} × VM × TM).
The execution of a distributed protocol at a particular process is characterized by a sequence
of events such as message send, message receive or other internal steps. We define an event
as a tuple (P × TE ×VE), where TE = {send, receive, internal}. VE is the set of possible
event values and containsM⊆ VE . For message send and receive events, the event value
is the message. E is the set of all possible events.

2.1.1 Protocol transition system

Given the preliminary definitions, we now define a local state of each process along with a
local transition system. We define a protocol π that captures the local state of each process
as follows,
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Definition 1. A protocol π is defined by the tuple (Σπ, s0
π, δπ, Fπ) where

• Σπ is the set of process local states as defined by the protocol and s0
π ∈ Σπ is the initial

state.
• δπ : Σπ × (M ∪ {⊥}) ⇀ Σπ × E is the (partial) transition function of the process.
Each transition emits an event. Internal steps are represented with transitions δπ(s,⊥)
while receiving a message m is represented with a transition δπ(s, m). We assume that
internal steps and message receive steps cannot be enabled in the same state, i.e. from
any state s ∈ Σπ if δπ(s,⊥) is defined, then δπ(s, m) for any m ∈M is not defined.

• Fπ ⊆ Σπ. For any state s ∈ Fπ, δπ is not defined from s. Final states allows us to restrict
the length of an execution in each replica.

The global state of the system consists of two parts. The set of local states of each process
and the network. We define the global state of the distributed system (a configuration) as
follows,

Definition 2. A distributed system configuration C = (E, pool, states, messages)
where,

• E = (e0, e1, · · · ) is a sequence of events ei ∈ E . This serves as a history of events
occurred at each process.

• pool ⊆ M is the set of messages in transit between different process and signifies the
network.

• states maps each process p to a state in Σπ

• messages maps each process p to a sequence of messages (m0, m1, · · · ) with mi ∈
M[p]. The sequence represents the inbound queue of process p

Figure 2.1 refers to the transition rules of the global state of the distributed system (between
two configurations). The rule Internal allows a process to transition its local state and emit
internal events. In the Send rule, a process emits specifically a send event for a message
m. The message m is added to the network pool. The Network rule adds messages from
the pool to the inbound message queue of a process messages[p]. Rule Receive allows
processes to consume amessage from their inbound queues by emitting specifically a receive
event. Additionally, the Adversary rulemodels adversarial (Byzantine) behavior where the
message pool is transformed arbitrarily.
Note that the protocol π is abstract. We do not make any assumptions about its states
or the transition relation. The transition relation can be non-deterministic. For example,
in a concrete implementation of the protocol, the state contains time of the process, and
Internal transitions increment the time.
We define an execution ρ as a sequence of transitions between configurations. The initial
configuration is C0 = ((), ϕ, states0, messages0) where ∀r ∈ P , states0[r] = s0

π and
messages0[r] = (). An execution ρ is complete if all replicas have reached final states.
(∀r, statesk[r] ∈ Fπ).
The history of an execution ρ is the tuple Hρ = (Eρ, <ρ) where Eρ is the set of events
in ρ ordered by the standard (partial) happens-before order <ρ. We will use e ∈ Eρ

and e ∈ Hρ interchangeably to denote an event exists in a history. Similarly, Mρ =
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δπ(states[r] ,⊥) = (s′, e) e = (r, internal, v)
Internal

(E, pool, states, messages) e−→ (E.e, pool, states[r → s′] , messages)

δπ(states[r] ,⊥) = (s′, e) e = (r, send, m)
Send

(E, pool, states, messages) e−→ (E.e, pool ∪ {m} , states[r → s′] , messages)

messages[r] = σ m ∈ pool[r]
Network

(E, pool, states, messages) network−−−−−→ (E, pool \ {m} , states, messages[r → σ.m])

messages[r] = m.σ δπ(states[r] , m) = (s′, e) e = (r, receive, m)
Receive

(E, pool, states, messages) e−→ (E.e, pool, states[r → s′] , messages[r → σ])

M ⊆M
Adversary

(E, pool, states, messages) adversary−−−−−−→ (E, M, states, messages)

Figure 2.1: Transition rules of a distributed system.
For a function f : A → B, we use f [a → b] to denote a function f ′ : A → B where
f ′(a) = b and f ′(a′) = f(a′) for all a′ ̸= a.

{m | (m.to, receive, m) ∈ Eρ} is the set of messages delivered to processes in the execu-
tion. We define the happens-before relation as the smallest relation between any two events
e1, e2 ∈ Eρ written (e1 <ρ e2) that satisfies,

1. e1, e2 are emitted by the same replica, and e1 occurred before e2 in ρ

2. e1 is a send event and e2 is the matching receive event, i.e., e1 = (m.from, send, m)
and e2 = (m.to, receive, m)

3. (transitive closure) there exists e3 such that e1 <ρ e3 and e3 <ρ e2

Different executions can result in the same history. The difference between the different
executions will be the ordering of concurrent and unrelated events.
Later in Chapter 3, we introduce a genericmonitor that simulates the network, replacing the
Network and Adversary rules. Additionally, the monitor interleaves with the distributed
system transition system defined above. By simulating the network, the monitor controls
the set of possible executions. Therefore, a monitor can bias the exploration.

2.2 Consensus protocols

The description above captures behavior of any abstract distributed protocol. While the
techniques we develop in this thesis are applicable to any such generic distributed proto-
col, we restrict our evaluation to implementations of the consensus protocol. The restric-
tion allows us to convincingly demonstrate the effectiveness of our techniques for concrete
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implementations that are widely used and deployed.

Consensus protocols define the behavior of nodeswith the goal of solving a specific problem
- where all correct nodes need to agree on a common value. Initially, all nodes propose a
single value and in the resulting final state, all nodes should decide on a common value.
When no values are proposed, no value should be decided. The following are the safety
properties that should be satisfied by a consensus protocol:

• (Validity) If all nodes propose the same value v then the decided value should be v.
• (Agreement) The number of decided values among all nodes should be exactly one.
• (Termination) All non-faulty nodes should eventually decide.

The network conditions play a crucial role in deciding the solvability of the consensus prob-
lem. It is impossible to solve under asynchronous network conditions [FLP85]. However,
many solutions exist under partial synchronous conditions [DLS84]. We will discuss two
solutions in the next section.

Based on the type of failures the solution tolerates, there are limits to the number of fail-
ures. Under crash failures - where nodes abruptly stop - the number of failures is limited
to f < n

2 [DLS84] where n is the number of nodes and f the number of faulty nodes. Sim-
ilarly, under Byzantine failures - where nodes behave arbitrarily - the maximum number
of failures that can be tolerated is f < n

3 [LSP82]. Consequently, the size of the “quorum”
depends on the type of failures tolerated. For crash failure, the quorum typically refers to
at least n

2 + 1 nodes and for byzantine failures, at least 2n
3 + 1 nodes.

Failures in a distributed system are consequential only if they are detected or observed
through the communication. Specifically, a crash failure is detected only when messages
are not received, and Byzantine failures affect the state of the system only when the mes-
sages of the violating process is received by other processes. Therefore, in the model of
distributed systems we present in Section 2.1 we do not model failures explicitly. However,
crash failures are represented by the adversary dropping all the messages of the crashed
process thereby simulating a crash. Similarly, the adversary can change the contents of the
messages to model Byzantine failures.

We will present one solution that tolerates crash failures and one solution that tolerates
Byzantine failures. Accordingly, we will test implementations of these solutions.

The abstract formal model described above captures the executions of a distributed system.
In this section, we will describe two concrete distributed protocols - Raft and PBFT. For
both examples, we will describe the protocol π, the set of states at each node Σπ, and the
transition function δπ.

2.2.1 Raft

Raft [OO14] is a distributed protocol that solves the consensus problem under crash failures.
The executions of raft begin with a client submitting a request (ClientRequest) to a set of
processes/nodes. The set of processes will execute the consensus protocol and subsequently
respond to the client whether the request was committed or not.
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Figure 2.2 illustrates an example execution of the Raft protocol. The protocol proceeds in
a sequence of interleaved terms with two phases within each term - leader election phase
and a leader replication phase.

Figure 2.2: Example Raft execution

Initially all processes are followers in term 0 and aim to elect a leader. After a randomly
chosen timeout duration, a process transitions to candidate state and sends a message re-
questing vote to all other processes. If a process receives a quorum of votes, it becomes
a leader, concluding the leader-election phase. Subsequently, the leader replicates the re-
quests for that term to other processes and receives acknowledgments. When a quorum of
processes acknowledge a replicated request within the term, the leader commits the request
and relays the commit information to all processes. Additionally, the leader sends periodic
heartbeat messages to all processes. If a process does not hear from the leader within pre-
configured duration, it increments the term number and transitions to the candidate phase
thereby initiating the next leader election phase.

Raft is a concrete instantiation of π from Section 2.1. The local state of a raft process s ∈ Σπ

consists of the role (leader, follower or candidate), the term number, the current leader,
the log of requests and so on. The initial state s0

π is term 0 and with the follower role.
The informal description of interaction between processes defines the protocol transition
function δπ.

For our testing purpose, we define the final state as those where the process has commit-
ted all ClientRequests. Since Raft only tolerates crash failures, we accept transitions of the
Adversary (from Figure 2.1) rule where the contents of the messages remains unchanged.

In our evaluation of Netrix, WaypointRL and ModelFuzz, we test 2 industrial implemen-
tations of the Raft protocol - Etcd Raft and RedisRaft. Etcd Raft 1 powers a popular key
value store used most commonly in cloud services. Etcd is also one of the core components
of the Kubernetes 2 cloud platform and powers many important services such as DNS and
service discovery. RedisRaft 3 is an extension of another popular distributed key-value store
- Redis.

1https://github.com/etcd-io/raft
2https://kubernetes.io
3https://github.com/redislabs/redisraft
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2.2.2 PBFT

Practical Byzantine fault tolerance (PBFT) [CL99] is a consensus protocol that tolerates
Byzantine failures. In addition to crash and network failures, Byzantine failures includes
arbitrary behaviors of a process such as lying about votes. Byzantine fault-tolerant proto-
cols have seen a rise in popularity due to their applicability in Blockchain systems.

Proof-of-stake blockchain systems rely on a set of participating nodes to agree on the trans-
actions to execute in each block. Byzantine consensus protocols are a natural fit for the
problem. Tendermint [BKM18] is one such blockchain protocol which is inspired by PBFT.
In our evaluation of Netrix, we test the implementation of Tendermint. The rest of this
section describes the PBFT protocol which we use as a motivating example with Netrix.

Figure 2.3: One execution round of PBFT with 4 processes

The normal execution of PBFT is denoted in Figure 2.3. The execution begins with a client
submitting a request to a designated proposer. The proposer replies to the client once the
request is committed.

Execution proceeds in rounds where in each round the designated proposer proposes a
request. Each round comprises of 3 phases - PrePrepare, Prepare and Commit that the pro-
cesses keep track of. Consider the system has n processes and tolerates up-to f failures
where n ≥ 3f + 1. At the end of the three phases, all correct processes decide either
to commit the request or not. In PrePrepare round, the proposer broadcasts the requests.
Processes respond to the request in the Prepare phase by broadcasting their vote. If a quo-
rum (2f + 1) votes for the request, then they transition to the Commit phase where they
broadcast votes once again before deciding to commit or reject. Processes keep track of a
timer for each request and initiate a round change when no decision is achieved. A process
transitions to a new round only if f + 1 other processes initiate a round change.

Similar to Raft, the local state of a process in PBFT consists of - the current proposer, the
current phase and round number, the log of committed requests, current time etc. Unlike
with Raft however, the set of all messages now includes arbitrary message corruptions to
model the Byzantine failures. Therefore, a network adversary (represented by the Adver-
sary rule in Figure 2.1) can change the contents of the messages to allow for Byzantine
failures.
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In our evaluation of Netrix, we test industrial implementations of two Byzantine protocols
motivated by PBFT - Tendermint4 and BFT-Smart5.

4https://github.com/tendermint/tendermint
5https://github.com/bft-smart/library
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Chapter 3

Netrix: unit tests for distributed

systems

In this chapter we present the tool Netrix and a domain specific language to test distributed
protocol implementations. Netrix allows developers to balance tradeoffs between effort
and precision when testing. On one end, we have fully automatic randomized exploration
techniques that require minimal effort from the developer. However, they are unreliable in
reproducing bugs due to the large state space. On the other end, a skilled developer with
high effort can test implementations by crafting intricate executions where bugs are more
likely. Since executions are crafted, bug reproducibility is high.

With Netrix a developer can balance the tradeoffs by crafting scenarios while relying on
the exploration capabilities of existing techniques. The scenarios, crafted using the domain
specific language (DSL) that accompanies Netrix, are informally a set of constraints on
the execution combined with an expected outcome. Concretely, a scenario is defined by a
sequence of filters where each rule is of the form ‘if-then’ - similar to match action filters
in a network switch. Similar to network switches, the filters define which messages are
enabled. Only the enabled messages are fed to the underlying exploration algorithm. A
developer either relies entirely on the exploration algorithm by not coding any filters or
retains complete control on the exploration by coding elaborate filters.

The filters are expressive enough to allow for crafting intricate scenarios. A developer can
delay (reorder) message delivery, block the delivery or changes the contents of the message
before delivery. Effectively, the filters can introduce network partitions, simulate crash and
byzantine failures along with exploring different message orderings. The filters along with
a property state machine make up a unit test. The state machine encodes a safety property
that is checked on every execution. The DSL, embedded in go, provides specific primitives
to construct the ‘if’ and ‘then’ parts of the filter.

Figure 3.1 illustrates the general architecture of Netrix which involves (1) capturing the
messages in transit, (2) recording the events occurring in the distributed system, (3) using
the events to drive unit tests and (4) decide which messages to deliver based on the unit
test actions. To enable (1) and (2) functions, the developer should instrument the imple-
mentation’s network interface such that the processes in the distributed systems send and
receive messages from Netrix.
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Figure 3.1: Netrix architecture

(1) The processes submit events, send/receive messages to a communication adapter. (2)
The adapter talks to Netrix via RPC. (3) The events and messages drive unit tests. (4)

Unit tests decide which messages to deliver

Start Fail
Leader elected

Figure 3.2: No leader election property in
Raft.

Example 1. Drop all votes

If(IsMessageType(Vote))
.Then(DropMessage())

Let us consider an example from Raft protocol to motivate and illustrate the working of a
unit test. To recall the protocol, processes in Raft proceed in terms with two phases in each
term - a leader election and a leader replication phase. Suppose the developer is interested
to test the following scenario - "when no votes are delivered, no leader is elected". Figure 3.2
illustrates the state machine that encodes the property and Example 1 lists the filter that
correspond to the scenario where we drop all vote messages. The above scenario tests
for a safety property where nothing bad happens - no leader is elected. By enforcing the
scenario, the developer is interested in testing the correctness of the relevant parts of the
code - which in this case are those components that handle leader election messages to
trigger a successful leader election.

As shown in the example, the filters are of the generic form If(condition).Then(action).
Netrix explores an execution by taking steps when new events are observed. At each
step, Netrix first applies the filters sequentially - similar to a switch case. If a condition
matches, the corresponding action is executed. In the default case (when no condition
matches), Netrix feeds the messages (enclosed in the events) to the underlying exploration
algorithm and finally delivers the messages output by the underlying algorithm. In parallel
to the filters, Netrix feeds the events to the state machine encoding the safety property.

Given the informal semantics, the single filter from the earlier example ensures that the
underlying exploration algorithm never observes any vote messages (since they are always
dropped). Therefore, the exploration is biased to only include executions where no vote
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Example 2. Drop votes of a particular process
p

If(IsMessageType(Vote)
.And(IsMessageFrom(p))

).Then(DropMessage())

Example 3. Duplicate votes of a particular
process p

If(IsMessageType(Vote)
.And(IsMessageFrom(p))

).Then(DuplicateVote())

messages are delivered. Current techniques fail to allow for such biased exploration. For
example with pure random testing tool such as Jepsen, the likelyhood of dropping all vote
messages or introducing sustained partitions to not elect a leader decreases exponentially
with the number of vote messages.

In general, consider the conditions as predicates over the state of the system and actions as
functions that decide the messages to deliver, the developer can craft high level scenarios
to introduce different types of failures. Consider Examples 2 where we drop vote messages
and 3 where we duplicate vote messages of a particular process. Example 2 describes a sce-
nario with message drop failures and Example 3 allows a developer to duplicate messages.
Similarly, we will show that Netrix filters are capable of introducing message re-orderings
and byzantine failures.

To demonstrate the capabilities of Netrix unit-tests in constraining the search space and
finding bugs, we write a total of 34 unit tests for 3 different benchmarks - Tendermint,
BFTSmart and Etcd and show that (1) Netrix can constrain the search space by measuring
the number of executions where the constraints are satisfied and, (2) with the constrained
search, Netrix uncovers new bugs and reproduces known bugs.

Once we demonstrate that Netrix filters are effective in constraining the search space, the
effort of the developer shifts to (1) describing scenarios and (2) encoding the scenarios into
filters. To aid the developer, we develop two concrete methodologies. First, a methodology
to derive scenarios from the specification and proofs of the protocol and second, show
that the developer can leverage the strength of existing exploration techniques to write
fewer filters. To demonstrate the latter, we introduce a new syntactic measure of filters
called filter distance that measures the importance of a filter. We show that with a specific
underlying exploration algorithm (PCTCP), the developer can forego writing filters with
shorter distances and yet efficiently explore the constrained search space.

In what follows, we first provide a background of existing testing methods that are relevant.
Then, in Section 3.2 we present the formal model of a monitor that captures the behavior
of a Netrix unit test. Section 3.3 describes the core DSL syntax, semantics, and possible
ways to extend the DSL. Section 3.4 contains details of the implementation. Subsequently,
we evaluate Netrix unit tests in Section 3.5. Finally in Section 3.6, we will describe general
guidelines to motivate scenarios and introduce the filter distance measure before discussing
the related work of unit testing for distributed systems.
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3.1 Background

Netrix allows developers to test an implementation with a given underlying exploration
algorithm. In this section, we describe in detail two related exploration algorithms - Jepsen
and PCTCP that we refer to in this chapter.

3.1.1 Jepsen

Jepsen [Kin22] is a popular randomized testing tool that has been successful in finding bugs
in popular distributed systems. The tool runs as a control process that starts and stops all
the nodes of a distributed system. Additionally, Jepsen controls the network between the
processes using iptables rules to enable and disable certain networks. Then, Jepsen
runs tests for many iterations. In each iteration, Jepsen generates random faults (network
partitions between the nodes) to be injected during the execution and subsequently heals
the partition. The resulting executions of running a Jepsen test is checked for safety prop-
erties such as linearizability.
While the faults generated are configurable to a certain degree, Jepsen tests in general do
not allow a developer to bias exploration towards specific executions. Furthermore, bugs
found by Jepsen are hard to reproduce. A typical workflow of testing with Jepsen is as
follows. For every new version of the implementation, Jepsen tests are run for many hours
on a cluster of machines. When bugs are found, the tests need to be rerun for the same
duration with no guarantees of reproducing the bugs.

3.1.2 PCTCP

PCTCP [Kul+18] extends a popular concurrency testing algorithm PCT [Bur+10] to dis-
tributed systems. Both algorithms rely on a probabilistic guarantee of visiting a state in a
given test run. Similar to Jepsen, the tools run for many iterations, exploring a specific exe-
cution in each iteration. The execution unfolds in a sequence of steps where the algorithm
accepts a set of new messages (events) and returns a specific message to deliver.
As mentioned in Section 2.1.1, the events of different nodes in the execution of a distributed
system are related by a happens-before partial-order relation. In PCTCP, a sequence of re-
lated events are chained together in a data structure called chain-partition (CP) with pri-
orities assigned to chains (Illustrated in Figure 3.3). At each step of the execution, the next
pending event from the highest priority (lowest value) chain is scheduled. In the figure,
there are two chains with priorities 10 and 3 respectively. Therefore, a pending event from
chain 2 is scheduled before a pending event from chain 1.
Furthermore, at random points in the execution, the priorities of two chains are swapped.
Figure 3.4 shows the transition of the state of PCTCP chains. Chain 1 and 2 swap priorities
with chain 1 receiving the higher priority value of 3. Therefore an event from chain 1 is
scheduled and the execution continues to other chains when all events from the current
chain have been exhausted.
The probabilistic guarantee is parameterized by a depth-bound d. Essentially, assume that a
bug occurs when d different messages have a specific order in the execution. With PCTCP,
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Figure 3.3: Snapshot of an ongoing execution with PCTCP. A step is taken choosing the
event from the highest priority chain. Pictorially, executed events are colored in grey.
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Figure 3.4: A priority change point of PCTCP and subsequent execution steps. Pictorially,
executed events are colored in grey.
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the probability of exploring an execution with d message ordering is 1
w2hd−1 where h is the

length of the execution and w is the maximum width of the partial order of events. Since
the expression is inverse exponential in d, the probability of finding bugs diminishes very
quickly if the depth d increases.
PCTCP partially addresses the bug-reproducibility problem. Given a fixed random seed,
the order of messages delivered are pre-determined therefore if a bug was found during a
run of PCTCP, it is more likely to be found again. However, since PCTCP does not control
other sources of non-determinism (such as time), in practice it is less likely to reproduce
bugs. Furthermore, just as with Jepsen, the set of iterations need to be rerun from scratch
to reproduce a bug.
When evaluating Netrix with the benchmarks, we rely on PCTCP as the underlying ex-
ploration algorithm. Furthermore, when the developer is using PCTCP to test implementa-
tions, we develop a syntactic measure filter distance to help decide which filters to include
in the test. The filter distance measure we will later present in Section 3.7 is specific to
PCTCP.

3.2 Monitor

Earlier in Section 2.1, we describe a transition system (Figure 2.1) to capture executions of a
distributed system. To test an implementation and force specific executions, we need con-
trol over the transitions of the global state. On one hand, to gain control over all 5 transition
rules we require a heavy instrumentation that involves extensive effort and understanding
of the codebase. On the other hand, to gain control of just the network and adversary we
need a light instrumentation where we only capture the messages in transit. In this thesis,
we test implementations only with a light instrumentation. In this section, we formally
define amonitor which captures the semantics of the light instrumentation. A Netrix unit
test defines a monitor that forces executions as per the filters defined in the unit test.
Intuitively, the monitor, driven by the events occurring in the system, delivers messages
to the message map of each process. The monitor contains state to encapsulate the logic
while moving messages and based on this state can alter the order in which messages are
delivered. For example, the monitor can drop messages, duplicate messages, corrupt mes-
sages or introduce new messages (to simulate byzantine-failures). Concretely, we define
the monitor as follows,

Definition 3. A monitor µ is defined as the tuple (Σµ, s0
µ, δµ, Fµ) where,

• Σµ is the set of possible monitor states with s0
µ as the initial state

• δµ : Σµ × E ⇀ Σµ × 2M is the transition function which accepts the current state and
event, and transitions to a new state along with a set of messages to be delivered.

• F M ⊆ Σµ is the set of accepting states (used to signal some property being satisfied)

Figure 3.5 describes the Monitor transition rule. The rule invokes the transition function
δµ with the head of the event queueE and the current monitor state as input and returns the
new state, a set of messages to deliver. The delivered messages are added to the respective
node’s inbound message queues and the monitor state is updated.
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E = e.E′

δµ(s, e) = (s′, M)
∀r. messages′(r) = messages(r).M [r]

(E, pool, messages, s) monitor−−−−−→ (E′, pool \M, messages′, s′)

Figure 3.5: Monitor transition rule

Note that in the transition rule, we reuse the terms E, pool, and messages from the transi-
tion system of a distributed system. To recall, E signifies the sequence of events occurred
in the distributed system, pool is the set of in-transit messages, and messages is a map of
inbound message queues per process.
In what follows, we describe a product transition that combines the monitor with the dis-
tributed system. The product transition system, synchronizes the monitor and the dis-
tributed system on these shared components.

3.2.1 Product Transition System

The asynchronous product of the two transition systems, that of the system parameterized
by the protocol π and the monitor µ defines the set of executions explored with a monitor.
The distributed system takes steps which publish events that are consumed by steps of
the monitor. In turn, the monitor decides the order and contents of the messages that are
consumed by the processes. We define the configuration of the product transition system
as follows,

Definition 4. A configuration of the product transition system C is defined as the tuple
(E, pool, states, messages, s) where,

• E, pool, states and messages are defined as in the distributed system.
• s denotes the current state of the monitor.

Figure 3.6 defines the transition rules for the product transition system. Steps are either
Internal, Send, Receive from the distributed system (transitions labeled by events e ∈ E)
or a step in the monitor transition system Monitor. Note that a monitor step delivers
messages to themessage queues (messages component of the configuration) of the process.
Therefore, a monitor step simulates a sequence of Network and Adversary steps from
the distributed system.

A run of the product system ρ = C0
l0−→ C1

l1−→ · · · lk−1−−→ Ck is a sequence of transitions as
above. A run is accepting if the monitor’s state in the last configuration is a final state, i.e.,
CM

k .s ∈ F M .

3.2.2 On the Expressivity of the Monitor

We give a characterization of the monitor’s capability to restrict the distributed system
behavior. We show that as an extreme case, the monitor can restrict the distributed system
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(E, pool, states, messages) e∈E−−→ (E′, pool′, states′, messages′)
System

(E, pool, states, messages, s) −→ (E′, pool′, states′, messages′, s)

(E, pool, messages, s) monitor−−−−−→ (E′, pool′, messages′, s′)
Monitor

(E, pool, states, messages, s) −→ (E′, pool′, states, messages′, s′)

Figure 3.6: Transition rules of product system

to produce a single history for a complete execution, i.e., all the complete executions in
the product transition system have the same history. We characterize the capabilities of
the monitor in terms of histories because the monitor cannot control the order between
concurrent events, which are incomparable w.r.t. happens-before. The order in which such
events are pushed to the event queue by the nodes (with the System transition rule) is not
under the control of the monitor. While in theory, the number of executions that have the
same history is exponential, in practice however, the number is smaller. The reason being
that two executions where concurrent events are reordered is indistinguishable from the
perspective of the processes. Therefore proving equivalence using histories that captures
the relation between related events is sufficient to demonstrate the expressiveness of the
monitor.
We state our result as a relation between the histories produced in a product transition
system and the history of a given complete distributed system execution ρ. Histories of
possibly incomplete executions of the product transition system are not necessarily equal
to the history of ρ but only a prefix. We define the standard prefix relation as follows,

Definition 5. The prefix relation ⪯ between two histories H1, H2 where H1 = (E1, <1)
and H2 = (E2, <2) is defined as usual, i.e., H1 ⪯ H2 if (1) Downward closure: E1 ⊆ E2 and
for every event e ∈ E1 and e′ ∈ E2, e′ <2 e⇒ e′ ∈ E1 ∧ e′ <1 e, and (2) Preserving happens
before: For two events e, e′ ∈ E1, e <1 e′ ⇔ e <2 e′.

Given the prefix relation, we now prove the main theorem capturing the expressiveness of
the monitor.

Theorem 1. For any complete run ρ in the distributed system of protocol π, there exists a
monitor µ such that, for all executions ρ′ in the product transition system of π and µ, Hρ′ ⪯ Hρ

Proof. For the given execution ρ and history H = Hρ = (Eρ, <ρ), we define OH : Mρ →
2Eρ , a function that maps a message m to events e′ that happen before the receive event
e = (m.to, receive, m). (Mρ is the set of all messages received by processes in the execution
ρ)

OH(m) = {e | e <ρ (m.to, receive, m)}

To capture messages introduced using the Adversary rule, we define AdvH

AdvH = {m | (m.to, receive, m) ∈ Eρ ∧ (m.from, send, m) /∈ Eρ}

– 24 –



We now define the monitor µ. The states of the monitor are s ∈ Σµ = (pool, E) where
pool ⊆M is the set of pending messages and E ⊆ E is the set of events that have already
occurred. The initial state is s0

µ = (ϕ, ϕ). We define the transition function of the monitor
as δµ(s, e) = (s′, M) where

s′.E = s.E ∪ {e}
M = {m | m ∈ (p′ ∪ AdvH) ∧m ∈Mρ ∧OH(m) ⊆ s′.E}

s′.pool =

(s.pool ∪ {m}) \M if e = (m.from, send, m)
s.pool \M otherwise

and p′ =

(s.pool ∪ {m}) if e = (m.from, send, m)
s.pool otherwise

Consider any execution in the product transition system ρ′ = C0
l0−→ C1

l1−→ · · · lg−1−−→ Cg.
We first prove that Hρ′ ⪯ Hρ.
First we prove the downward closure property. We need to prove that Eρ′ ⊆ Eρ and for
any event e ∈ Eρ,

e ∈ Eρ′ ⇒ (∀e′, e′ <ρ e⇒ e′ ∈ Eρ′ ∧ e′ <ρ′ e)

Let us consider the case when e = (m.to, receive, m). We know that in ρ′ every Receive
step at i is preceded by a Monitor step at j < i. That is, δµ(sj, ej) = (sj+1, M) where
m ∈M . By the definition of M ,

1. OH(m) ⊆ sj+1.E ⊆ Eρ′ . In other words all events e′ where e′ <ρ e ⇒ e′ ∈ Eρ′ .
Furthermore, we can say that e′ has occurred in ρ′ at step j < i. When e′ is in the
same process, by the definition of happens before, this is sufficient to say that e′ <ρ′ e.

2. m ∈Mρ. This implies that Mρ′ ⊆Mρ

Let (e1, e2, · · · , ek) be the sequence of receive events at a process r ∈ P in the execution ρ.
Consider the largest i such that ei ∈ Eρ′ , then as a consequence of (1) (e1, e2, · · · , ei) is the
sequence of receive events for process r in the execution ρ′. In other words, the sequence
of messages delivered to a process in ρ′ is a prefix of the same sequence in ρ.
Consider the projection of ρ, ρ′ for a given process r ∈ P . That is, the steps that corre-
spond to state changes for the process r. In this projection for ρ, let (s0, s1, · · · , sg) and
(e1, e2, · · · , eg) be the sequence of states and events respectively, where g is the length of
ρ′ (as ρ′ can be smaller than ρ). By induction on i, we prove that si, ei is the state of the
process and the event emitted by r in the execution ρ′. When i = 0, this is trivially true
since the initial state is the same for both the executions. Assuming it is true at step i, we
need to prove that si+1 is the state in ρ′. From a given state and by the definition of δπ, one
of either δπ(si,⊥) or δπ(si, m) (for some m ∈M) is defined.

1. δπ(si,⊥) = (si+1, ei). Then, it is the same in ρ′ (as δπ is a function)
2. δπ(si, m) = (si+1, ei). This is true because (1) the sequence of messages delivered in

ρ′ is the same and hence m will be the same and (2) δπ is a function
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Since the sequence of events in each process observed in ρ′ is a prefix of that observed in
ρ, we infer that Eρ′ ⊆ Eρ. Futhermore, combined with the property that all events before a
receive in ρ also occur in ρ′, we infer that Hρ′ ⪯ Hρ and that ∀e, e′ ∈ Eρ′ , e <ρ′ e′ ⇔ e <ρ

e′

To prove Theorem 1, we define a very constrained monitor that reproduces exactly one
history in every accepting run. However, in practice, such a restrictive monitor is not very
useful. When testing an implementation in a constrained state space, the algorithm is more
likely to find bugs when it explores more states. Therefore, in practice, we fix only specific
events of the history and allow themonitor to explore other histories. Theorem 1 shows that
even under the relaxed scenario, the monitor will be effective in constraining executions.
In the next section, we define the syntax and semantics of Netrix unit tests. The filters
that make up a unit test allow the developer to fix specific events and therefore construct a
monitor that constrains executions.

3.3 Netrix unit tests and DSL

The core of the DSL contains primitives to define condition and action parts of the filter.
Recall that a filter is of the form If(condition).Then(actions). However, in general, a con-
dition and action are functions. A condition is a function that accepts the monitor state and
event to return a boolean value. Similarly an action is a function that accepts the monitor
state and event to return a sequence of messages and may also change the state. In our
DSL, the monitor state is represented by a Context object.

3.3.1 Syntax

Table 3.1 and 3.2 lists the generic conditions and actions provided with the DSL. Using these
primitives one can define filters to drop messages, reorder them and introduce network
partitions. For example, to isolate a single process p from the rest the filter would be

If(IsMessageFrom(p).Or(IsMessageTo(p)))
.Then(DropMessage()))

Similarly to reorder the message, we need two filters - one to capture the message and one
to release the message. For example with Raft, to reorder all term 1 messages to after term
2 the filters would be as follows

If(IsMessageTerm(1))
.Then(MessageSet("term1").Store()))

If(IsNewTermEvent(2))
.Then(MessageSet("term1").DeliverAll()))

Note thatMessageSet().Store() andMessageSet().DeliverAll() uses the context object to record
the messages. Having access to the state allows us to write complex scenarios where we
can count and precisely time the delivery of messages.
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Table 3.1: Semantics of conditions for event e and context ctx

Condition Return value
IsEventOf(r) true if e.replica = r
IsEventType(t) true if the e.type = t
IsMessageType(t) true if e.type=send(m)/receive(m) and m.type=t
IsMessageSend true if e.type=send(*)
IsMessageReceive true if e.type=receive(*)
IsMessageFrom(r) true if e.type = send(m)/receive(m) and m.from=r
IsMessageTo(r) true if e.type = send(m)/receive(m) and m.to=r

IsMessageBetween(r1, r2)
true if e.type = send(m)/receive(m) and
{m.to, m.from} = {r1, r2}

Count(c).Lt(v) true if ctx[c] < v
Count(c).Gt(v) true if ctx[c] > v
Count(c).Leq(v) true if ctx[c] <= v
Count(c).Gte(v) true if ctx[c] >= v
MessageSet(s).Contains true if e.type = send(m)/receive(m) and m ∈ ctx[s]
c1.And(c2) true if c1(e,ctx) ∧ c2(e,ctx)
c1.Or(c2) true if c1(e,ctx) ∨ c2(e,ctx)
c.Not true if !c(e,ctx)

While the conditions and actions provided are generic to all distributed systems, a user may
extend the DSL by defining custom conditions and actions. Extensions are straight forward
since conditions and actions are defined semantically as function. For example in the sce-
nario described above, we use two custom conditions IsMessageTerm and IsNewTermEvent.
In Section 3.5.3, we list extensions to the DSL we use in testing specific implementations.
Note that the DSL is embedded [FP10] in go programming language.

In addition to the filters, a unit test consists of a state machine that encodes a property.
Our DSL also provides a generic builder pattern to construct the state machine. The tran-
sitions of the state machine are labelled by conditions. Therefore, it is possible to reuse the
primitives defined earlier.

Table 3.2: Semantics of actions for an event e and context ctx

Action Return value Context changes

DeliverMessage if e.type=send(m)
returns m -

MessageSet(s).Store empty set ctx[s] = ctx[s] ∪ m
where e.type=send(m)/receive(m)

DropMessage empty set -
MessageSet(s).DeliverAll returns ctx[s] ctx[s] is set to empty
Count(c).Incr empty set ctx[c]++
RecordMessageAs(l) empty set ctx[l] = m where e.type = send(m)
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Figure 3.7: Semantics of executing filters

3.3.2 Semantics

The semantics of the DSL essentially define the monitor transition function δµ from Sec-
tion 3.2. The monitor is parametrized by the set of filters, the state machine that encodes a
property, and an underlying exploration algorithm.

Recall that the transition function δµ is defined as δµ : Σµ × E ⇀ Σµ × 2M. The state of
the Netrix monitor consists of - the context, the current state of the state machine, and
the state of the underlying exploration algorithm. The transition function encodes how we
execute the filters - similar to a switch case.

Figure 3.7 captures the semantics of the transition function. We invoke the filter conditions
by passing the event and the context. If a condition returns true, then the corresponding
action decides both the new state and the set of messages to deliver (or not). When none
of the conditions return true, the event is passed to the underlying exploration algorithm
which subsequently decides the set of messages to deliver.

Let us consider two example unit tests to better understand the semantics. First, a unit test
with no filters. The execution steps are as follows - (1) the event is fed to the property state
machine. Then, (2) the event is passed to the underlying exploration algorithm to update its
state. Finally (3) the underlying exploration algorithm decides which messages to deliver.

Second, a unit test with a single filter that drops messages of a particular type t. In that case,
the execution is as follows for each event - (1) The event is passed to the filter condition. (2)
If the condition is true, then the corresponding action (Drop) is executed. (3) If the condition
is false, then the event is passed to the underlying execution.

For unit tests that contains more than one filter, for each event the filters are executed
similar to a switch case - sequentially until the first condition is satisfied. Formally, each
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filter is a function that accepts a state and an event and returns a new state and a set of
messages. The filter inturn is a composition of a condition and action.
Apart from the filters, each event is passed to the property state machine that accompanies
the unit test. The accepting states of the monitor (F µ) parameterized by the unit test are
exactly those states where the property state machine is accepting.

3.3.3 Extending the DSL

As mentioned earlier, a developer may choose to extend the DSL with custom conditions
and actions. To introduce Byzantine failures where message contents are changed, extend-
ing the DSL is mandatory as the message serialization and de serialization mechanism is
specific to each implementation.
Apart from the conditions and actions in Tables 3.1 and 3.2, our DSL provides partitions
as first class primitives. The goal of partition primitives is to enforce a logical separation
between processes during an execution. During initialization, a new partition can be cre-
ated using NewRandomPartition which accepts a sequence of integers representing the
size of each partition. The conditions related to partitions are IsMessageFromPart(p),

IsMessageAcrossPartition and IsMessageWithinPartition.

3.4 Implementing Netrix

In this section we present the implementation of Netrix which consists of two parts - the
instrumented implementation and the runtime. The instrumented implementation creates
events that are processed by the runtime to guide the exploration. The runtime is a concrete
implementation of the monitor introduced in Section 3.2.

3.4.1 Instrumentation

The instrumentation consists of a thin shim around the transport interface of the implemen-
tation. Implementation provide transport abstractions to send and receive messages from
other processes. By instrumenting, we inject a shim to such a transport interface. The shim
will send messages to the Netrix runtime instead of the intended processes. Apart from
communicating the messages, the shim will also send events related to the messages such
as message send and receive events. In addition to these events, a developer can further
instrument the implementation and capture other events that are specific to the protocol.
For example with Raft, the developer can instrument the implementation to capture events
such as Becoming a leader, a term timeout, etc.
The shim transmits all events and messages to dedicated interfaces of the runtime. We
generalize the interface that the client interacts with and provide language specific client
libraries that can be utilized by the shim. The details of the interface is discussed in Sec-
tion 3.4.2.
Apart from communicating information to the runtime, the shim needs to also receive in-
formation from the runtime - such as messages, instructions to start, stop or restart, etc. We
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Figure 3.8: Instrumentation workflow
1 Discovery process, nodes establish connection to Netrix (After) as opposed to discover-

ing each other (Before)
2 Before: nodes exchange messages. After: (a) Nodes send a message send event to Netrix

(b) followed by the message. (c) Node receives the message and (d) submits a receive
event

generalize the interface of the shim that is used by the runtime to communicate information
to the processes. The interface consists of the following two endpoints.

1. ClientMessageEndpoint - To receive messages from the Netrix runtime.
2. ClientDirectiveEndpoint - To receive directives such as start, stop and restart from

the runtime.

Figure 3.8 describes the difference in workflow before and after instrumentation. The in-
strumentation allows Netrix to capture all the messages. After instrumentation, nodes
communicate to the runtime as opposed to communicating between themselves.

3.4.2 Runtime

The Netrix runtime (written in go) drives the exploration of the state space. It is parame-
terized by an underlying exploration algorithm (such as PCTCP) and a unit test. While the
client libraries are language specific, the Netrix runtime is independent of the language of
the implementation. Therefore, developers can use Netrix to test implementations of any
language.

To drive the exploration, the runtime captures events and messages from the instrumented
nodes and feeds them to an exploration Strategy. In our evaluation, we use a specific
strategy - PCTStrategyWithTestCase - that implements the semantics of a Netrix
unit test with PCTCP as the underlying exploration algorithm.
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Snippet 3.1: TestOne
function TestOne() *TestCase {
...
filters.AddFilter(
If(IsMessageType("Prepare"))
.Then(DropMessage())

)
return NewTestCase("TestOne",sm,filters)

}

A Netrix unit test is represented by a TestCase object that includes the filters and a
property state machine. For example, Snippet 3.1 implements a simple unit test with a
single filter - one that drops all Prepare messages. Note that the function returns a new
TestCase that consists of the filter and a state machine that encodes a safety assertion.
Once initialized with a Strategy, the Netrix runtime creates the necessary data struc-
tures to hold messages, events and to communicate with the nodes. The workflow steps
are as follows. (1) The runtime starts an RPC server to communicate with the nodes,
(2) Waits till all nodes Register with the runtime, (3) Creates an EventQueue and a
MessageStore to store events and messages respectively, and (4) starts running the
test iterations. The inner loop of running the iterations involves (1) initializing a new
Context, (2) invoking the function Strategy.Step with an event and a Context
(3) delivering the messages to the nodes after the step, and finally, (3) at the end of the
iteration, sending a restart directive to all nodes.
The RPC server of the runtime has the following endpoints,

1. RegisterEndpoint - Invoked initially to register a process with the runtime. Used to
transmit keys, process IDs and other information needed by the runtime. The keys
are essential to inject Byzantine faults where the runtime needs to sign the modified
message with the process keys.

2. MessagesEndpoint - To receive messages from the clients of the processes.
3. EventsEndpoint - To receive events from the clients of the processes.

The runtime is not specific to any particular distributed system implementation and con-
tains generic data structures to events and messages. A few more features of the imple-
mentations allow Netrix to be used to test implementations of any language - the generic
endpoints, allow for custom handling of start, stop and restart directives, and generic con-
ditions and actions that make up the filters of a TestCase.

3.5 Evaluation

To evaluate Netrix, we instrument and test three open source consensus protocol im-
plementations. Tendermint

1 [BKM18] (version 34.3), Raft2 [OO14] (version v3.5.2) and
1https://github.com/tendermint/tendermint
2https://github.com/etcd-io/etcd/tree/main/raft
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BFTSmart
3. The Tendermint protocol is a Byzantine consensus algorithm inspired by PBFT

and is the backbone of the cosmos network4. We test the official implementation of Ten-
dermint written in Go. Similarly, BFTSmart[BSA14; SB12] implements in Java a Byzantine
consensus algorithm. It is used to build key-value stores and distributed file systems. Raft is
a popular benign consensus protocol that tolerates crash failures. We test the Go implemen-
tation that is used in many cloud services such as etcd and distributed graph databases
such as dgraph. For the three benchmarks, the instrumentation effort aided by our lan-
guage specific libraries needed to test these implementation is very little and is evident in
the size of the instrumented code added - 600 LOC for Tendermint codebase of 150kLOC,
120LOC for Raft codebase of 16kLOC and 150LOC for BFTSmart codebase of 16kLOC.
For the three implementations, we write a total of 34 unit tests with the aim of answering
the following two research questions,

RQ1 Do Netrix unit tests help bias the exploration?
RQ2 Does biased exploration help uncover bugs and improve bug reproducibility?

We find that the answer to the research questions as Yes, Netrix unit tests constrains the
exploration based on the filters provided and with the biased exploration, we uncover 4
instances where the implementation deviates from the protocol specification in Tender-
mint. We demonstrate additional benefits to testing implementations with Netrix unit
tests. Namely, (1) the unit tests are concise and easy to write - unit tests have on average
2.5 filters, (2) the unit tests help with regression testing - We were able to run the tests on
multiple versions of the implementation with little or no changes, (3) Netrix can be used
to test implementations written in any language - we test implementations written in Java
and Go and finally (4) the biased exploration with unit tests allow the developer to gain
confidence even when no bugs are found.

Experimental setup The 34 unit tests were run on Intel Xeon(R) 16-core CPU with a
clock rate of 2.13GHz and a memory capacity of 128GB. Each test was run for 100 iterations
with a benchmark specific timeout for each iteration. The test harness consists of client
requests to each of the respective benchmarks.

3.5.1 RQ1: Do Netrix unit tests help bias the exploration?

Yes, Netrix unit tests bias the exploration. We measure the number of biased executions
by encoding the constrainment criteria in the property state machine that accompanies the
filters. When the state machine reaches a success state, we count the outcome as successful.
Table 3.3 lists the outcomes for the 34 unit tests for the 3 benchmarks. In 27 out of the 34
unit tests, we reach an outcome greater than 50%. The outcomes for the remaining 7 tests
are low due to fewer constraints on the execution. Meaning, the number of filters allow
for executions that does not always satisfy the property that corresponds to the test. While
adding more filters improves the outcomes, these tests demonstrate that even with missing
filters, the exploration sufficiently satisfies the expected outcomes.

3https://github.com/bft-smart/library
4https://cosmos.network
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Name #F #S LOC Outcomes Name #F #S LOC Outcomes
Tendermint Raft

ExpectUnlock* 3 5 90 41/100 Livenessˆ 5 3 64 15/100
Relocked* 4 5 115 53/100 LivenessNoCQˆ 5 3 64 100/100
LockedCommit* 3 5 85 100/100 NoLivenessˆ 5 3 33 100/100
LaggingReplica* 3 4 71 100/100 ConfChangeBugˆ 5 2 94 55/100
ForeverLaggingReplica* 5 5 89 100/100 DropHeartbeat 2 3 69 100/100
RoundSkip 3 4 74 90/100 DropVotes 1 3 44 80/100
BlockVotes 2 3 55 33/100 DropFVotes 1 2 57 100/100
PrecommitInvariant 1 3 68 100/100 DropAppend 1 3 81 100/100
CommitAfterRoundSkip 3 3 82 36/100 ReVote 2 3 54 74/100
DifferentDecisions 8 3 180 20/100 ManyReVote 2 4 64 92/100
NilPrevotes 2 3 61 99/100 MultiReVote 2 4 60 81/100
ProposalNilPrevote 1 3 56 56/100 BFTSmart

NotNilDecide 2 2 49 100/100 DPropForP 2 3 60 81/100
GarbledMessage 1 2 68 30/100 DPropSame 2 2 40 100/100
HigherRound 1 3 91 37/100 DropWrite 1 2 30 100/100

DropWriteForP 1 2 33 89/100
ExpectNewEpoch 1 2 28 94/100
ExpectStop 1 2 38 100/100
ByzLeaderChange 3 2 46 89/100
PrevEpochProposal 2 3 53 99/100

Table 3.3: List of unit tests
The table lists unit tests grouped by the protocol. The columns are number of filters, state
machine states, LOC and outcomes in number of iterations that successfully caught the
interesting scenario/bug. * indicates new bugs found and ˆ indicates tests for replicating

known bugs

The unit tests are quick to run with each test (100 iteration) running for a fewminutes since
each test iteration takes ≈ 2s on average. Since running the test is not compute intensive,
the performance of the tests relies heavily on the latency of network communications.

3.5.2 RQ2: Does biased exploration help uncover bugs and improve

bug reproducibility?

In the case of Tendermint, we uncover 4 new bugs. These bugs are protocol deviations -
instances where the implementation deviates from the protocol specification. In Table 3.3,
the respective unit tests are marked. One of them is a performance bug. A process is
isolated while the rest progress to higher rounds. When the process reconnects, it fails to
immediately synchronize and the duration required to synchronize increases as the gap in
the number of rounds increases. Essentially, the remaining participating processes operate
with fewer correct processes.

The bugs with Tendermint are reproduced with high outcomes - indicating a significant
improvement in bug reproducibility. We reported the bugs to the developer team and 3 of
the 4 bugs were duly fixed. Furthermore, we ran the unit tests on the fixed version of the
implementation and failed to find any bugs indicating higher confidence in the correctness
of the fix.
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For Etcd, we did not uncover any new bugs with the unit tests. However, we reverted to
an older version of etcd which included 4 previously known bugs. The respective tests
are marked in Table 3.3. We see that except for one bug, the remaining 3 bugs are repro-
duced with high outcomes. The one bug that was not reproducible was due to high level
of non-determinism. Specifically, the number of timeouts that need to be synchronized to
reproduce the bug is high and therefore very few executions reproduce the bugs.

While, we did not uncover any bugs with BFTSmart, we were able to debug and gain con-
fidence in the correctness of the BFTSmart implementation.

3.5.3 DSL extensions

In the process of testing, we develop custom conditions and actions for each of the bench-
marks presented. Table 3.4 lists the customizations we develop. To recall, conditions are
functions that accept an event and context to return a boolean, and an action is a function
that accepts an event and context to return a set of messages to deliver while mutating the
context. Some of the custom conditions we list are only valid for message send and receive
events (e.g. IsAcceptingVote, CountVotes).

The custom conditions listed are of two types pure - does not rely on the context and only
depends on the current event (e.g. IsAcceptingVote) - or stateful - relies on the information
stored in context (e.g. RoundReached). Similarly, actions are pure (e.g. ChangeVoteToNil)
or stateful (e.g. CountLeaderChanges) depending on whether they mutate the context or
not.

Similar to tradition unit-tests where the primitives (mocks) are reused, the corpus of custom
conditions and actions are reusable across different filters in different unit tests.

3.6 Motivating scenarios

As demonstrated, Netrix unit tests are effective in constraining exploration, finding and
reproducing bugs more frequently. However, the developer is now responsible for writing
the unit tests. To aid the developer, we provide a general methodology to generate unit
tests from the protocol specification and proofs.

We rely on three sources to generate unit tests - the protocol specification, the proofs of
the protocol and interactions with the developers. The guidelines we describe to generate
unit tests are general to distributed systems and not tied to the specific protocols we test.
We will use unit tests and scenarios interchangeably.

Protocol Specification Given a protocol specification, one can derive unit tests where
no failures occur. The corresponding happy path can be encoded in the state machine of
the unit test. Alternatively, trying to cover all lines of the protocol specification also leads
to test scenarios. For example, consider the following lines from the Tendermint protocol
specification
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Table 3.4: Table of custom conditions and action for the benchmarks

Name Benchmark Type Description
IsStateLeader Etcd Condition Checks if the event corresponds to

a state change where the new state
is a leader

IsAcceptingVote Etcd Condition Checks if the message is a vote and
that the vote is accepting

IsNewTerm Etcd Condition Checks if the event corresponds to
a term change

RecordTerm Etcd Action Records the term of the event in
context

CountLeaderChanges Etcd Action Keeps track of how many leader
changes have occurred using con-
text

CountVotes Etcd Action Counts the number of messages of
type vote received so far

IsNilCommit Tendermint Condition Checks if the message is a commit
for the nil block

IsCommitForProposal(p) Tendermint Condition Checks if the messages is a commit
for a specific proposal p

IsMessageFromRound(r) Tendermint Condition Checks if the round number con-
tained in the message is r

RoundReached(r) Tendermint Condition Using the context, checks if all the
nodes have reached round r

IsEventNewRound Tendermint Condition Checks if the current event is a new
round event

ChangeVoteToNil Tendermint Action If the event corresponds to a vote
message, then the action changes
the vote to nil

RecordProposal Tendermint Action Records the proposal contained in
the event (if any)

IsView(v) BFTSmart Condition Checks if the message is from view
v

IsNewEpoch BFTSmart Condition Checks if the event corresponds to
a epoch change

GarbleValue BFTSmart Action Corrupt the value of the corre-
sponding message to a randomly
chosen value
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Upon (f+1) messages from a higher round r
Transition to round r

To simulate this scenario, we isolate one process p and do not deliver any messages from
round 0. We then force the remaining processes to move to round 1. According to the
protocol specification, after receiving f + 1 messages from the round 1, the isolated pro-
cess transitions to round 1. To assert the scenario, we define a custom condition Process-
NewRound(p,r) which is true when we observe a round change event from the process p
for the round r. Specifically, we found that the Tendermint implementation fails this unit
test and the isolated process fails to catch up the other processes immediately. The time
required for the catchup increases as the gap in rounds between the lagging process and
the remaining process increases. The Tendermint team has acknowledged the bug.
We introduce a notion of protocol coverage to justify the expressiveness of the DSL. As
mentioned above, a protocol is typically specified as a sequence of ‘Upon’ clauses followed
by a set of execution rules. We say a unit test covers a protocol clause if, in the executions
explored by the unit test, the clause is satisfied at least in one process. With our unit tests,
we covered all the clauses as defined in the protocol specification for both Tendermint and
Raft.

Protocol proofs Apart from the protocol specification, the developer can derive test sce-
narios from the proofs of the protocols. For example, consider the following inductive in-
variants used in the proof of the Tendermint protocol5:

v ̸= nil∧∃p.precommitted(p, r, v)→
∃quorum.∀p.p ∈ quorum→ prevoted(p, r, v)

This formula states that if a process p Precommits a non nil value v in round r, then a
quorum of validators should have sent Prevote messages for v in round r. This is an
implication of the form A → B, and the corresponding unit test contains filters to ensure
¬B, i.e., a quorum of processes do not Prevote on the Proposed value, and a state
machine that reaches the fail state if it observes A, i.e., it observes a Precommit from
any validator.

3.7 Filter distance

To further aid the developer when writing tests, we define a new syntactic measure filter
distance to identify the necessary filters when using PCTCP as the underlying exploration
algorithm. The developer can forego writing filters with shorter distance and still obtain
high outcomes. We demonstrate the same by evaluating a few of the unit tests.
We group the filters that make up the 34 unit tests into 3 categories. For each category, we
define the filter distance metric that signifies the importance of the filter in a unit test. The
filter distance is specific to the underlying exploration algorithm and signifies the relative

5https://github.com/tendermint/spec/tree/master/ivy-proofs
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Figure 3.9: Filter distance of a pair of capture and release filters. The release occurs after 2
rounds of communication.

importance based on the underlying algorithm. Filters with low distance measure are less
important and the filters with higher distance are necessary.
The three categories of filters are as follows,

1. Byzantine - Filters that introduce Byzantine behavior
2. Drop - Filters that drop messages
3. Reorder - Filters that reorder messages

The Reorder filters can be grouped into pairs. Ones that capture the message and store it in
a set and ones that release the messages stored in a set. Similarly, drop filters also consists
of pairs where the release filter is triggered after the end of the execution. The distance
metric is defined for a pair of capture-release filters and can be determined syntactically.
We define the distance as the number of messages between the capture and release filter in
a normal execution of the protocol (without any faults). Let us consider an example from
an abstract round based protocol. The example illustrated in Figure 3.9 is as follows, the
capture filter captures messages of round r and the release filter releases the messages after
round r + 2. And in each round O(n) messages are exchanged. Then, the distance of the
pair of capture-release filters is 2n.
Let us consider a second example, a Netrix filter, to understand the filter distance measure
in relation to PCTCP,

If(IsMessageOfType(t))
.Then(DropMessage())

The filter describes scenarios where all messages of type t are dropped. To observe a similar
execution with PCTCP, all the dropped messages have to be scheduled at the end of the
execution. Therefore, d will be set to the length of the execution which is very high. PCTCP
is very unlikely to explore scenarios where this occurs due to the large d. Additionally, since
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Test Name Protocol Filter distances PCTCP outcomes

Liveness Raft
∞ 0
n2 0
n 19/1000

LivnessNoCQ Raft
∞ 0
n2 0
n 19/1000

DropAppend Raft n 21/1000
ReVote Raft n 409/1000
ManyReVote Raft 2n 14/1000
MultiReVote Raft 3n 1/1000
RoundSkip Tendermint r × n 6/1000

Table 3.5: List of Filter distances
Unit tests where filter distances are small and PCTCP is able to explore expected

re-orderings. Distance - measures for each filter pair. Outcomes - number of successful
iterations when we remove that filter and run PCTCP. We denote distance as an

asymptotic measure where n is number of processes and r is the number of rounds.

PCTCP does not have the ability to introduce Byzantine failures, we define the distance as
inf for those filters that introduce Byzantine failures.
To recall from Section 3.1.2, PCTCP algorithm observes the set of messages sent during an
execution, stores them into a set of (causally-ordered) chains, and delivers messages from
these chains according to a random strategy. The probability of exploring executions with
d-message re-orderings is 1

w2hd−1 . Therefore, the probability decreases as depth d increases.

We observe that PCTCP fails to explore executions where the re-orderings are beyond a
certain distance threshold - O(n2). However, the filters with short distance measures (1-2
communication rounds or O(n)) are not crucial and PCTCP is able to explore the respective
re-ordering. Table 3.5 lists the distance of all the filters for specific unit tests. The PCTCP
outcomes column signifies the outcomes when we run the test without including the filter.
If we remove a filter with high distance, the outcomes are low and therefore the filter is
important.

3.8 Related Work

Our work is inspired by Concurrit [Elm+13], which enables a similar scenario-based test-
ing approach for multi-threaded concurrent programs. It introduces a DSL that enables
developers to define tests where they can control the scheduling between threads with a
minimal instrumentation effort. This DSL is specific to multi-threading and very differ-
ent compared to Netrix DSL which is specific to testing implementations of distributed
protocols. GFuzz [Des+18a] applies the idea of exploring different message orderings be-
tween concurrent go channels and has demonstrated success in finding concurrency bugs
in actual implementations. P-sharp [Del+15a] is an actor based programming language that
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allows developers to write asynchronous systems. P-sharp is embedded in the C-sharp pro-
gramming language and is accompanied by a systematic concurrency testing framework.
Similar to GFuzz, P-sharp explores arbitrary event orderings between the actors to find con-
currency bugs. However, both GFuzz andP-sharp do not allow describing specific scenarios
to test.
Our DSL primitives are motivated by specification languages for protocols such as DIS-
TAL [Del12] where programs are a sequence of Upon clauses. Each Upon is followed by
a predicate on the state of the protocol and current message. Similar to our DSL, DIS-
TAL predicates contain counting, sets of messages and comparing message types. ModP
[Des+18b] language allows protocol designers to describe and test a model of the protocol.
Similar to DISTAL, ModP machines contains a sequence of on event handlers that modify
the state of the machine. The on handlers are followed by predicates similar to DISTAL.
ModP also generates code for testing the programs. While these are effective in finding
bugs in a model of a protocol, the results however do not help in testing production im-
plementations. The main reason they do not help in production environments is because
model checkers do not scale when applied directly on implementation of large systems.
Moreover most model-checkers that work at the programming language level, are not even
applicable to this application domain, as they focus on primitives for shared memory and
not message passing [Kov+24; Bor+24]. Therefore our DSL provides the only guided way
to do exploration of the execution space on implementations.
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Chapter 4

WaypointRL: biased exploration using

reinforcement learning

In the previous chapter we discussed a novel unit testing approach to distributed systems
- Netrix. The unit tests allow a developer to encode a specific scenario and enforce the
exploration to only explore executions that satisfy that scenario. In this chapter we explore
an alternative method to bias exploration using Reinforcement Learning where an agent
learns the scenario.

In reinforcement learning (RL), an agent interacts with an environment by observing the
state and picking actions that lead to new states. The goal of the agent is to collect maximum
rewards from the environment. The standard example is that of a robot learning to navigate
a maze with the goal of finding a way out. The robot is equipped with an RL agent and the
maze is the environment. Over many iterations (episodes) with a fixed number of steps
(horizon), the robot learns a path out. The maze rewards the agent every time it finds
a way out. While in the maze example the transitions are deterministic, the algorithms
driving the RL agent are equipped to explore non-deterministic transition systems as well.
The reward collected in an episode are propagated back with time. If the reward is sparse
- too infrequent, the agent will revert to random exploration.

RL techniques have achieved significant success in many domains over the years. Natu-
rally, in this chapter we explore the applicability of RL to testing and specifically to testing
distributed systems. However unlike a standard environment with rewards, the goal of an
RL agent in testing is to explore as many states as possible thereby increasing the prob-
ability of finding bugs. Naturally, the question now translates to finding the best reward
mechanism to ensure maximal exploration (or pure-coverage). Existing works [Muk+20;
Men+23b; Red+20] propose a punishment based reward scheme where the agent is pun-
ished proportional to the number of visits to a state. As a consequence, the agent now
learns to pick actions that leads to fewer-visited states.

Our first contribution in this chapter is a new reward mechanism BonusMaxRL for pure-
coverage that is motivated by recent theoretical results in reward-free reinforcement learn-
ing [Jin+20; ZMS20]. In BonusMaxRL, we introduce two new mechanisms to propagate
rewards. First, the reward for a new state decays based on the number of visits (1/k where
k is the number of visits). With the decaying reward, the RL agent is incentivized to pick
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actions that lead to new states in the short run. Second, the standard reward back prop-
agation in BonusMaxRL prioritizes observing new states immediately instead of optimiz-
ing for pure-exploration. We elaborate on the differences later on in Section 4.1. Overall,
BonusMaxRL achieves surprisingly high coverage and is comparable to existing explo-
ration algorithms. Furthermore, the positive decaying reward allows us to build a biased
exploration algorithm WaypointRL
By leveraging the insights gained from testing implementations using Netrix, we design
a new RL based algorithm WaypointRL where the developer specifies waypoints to char-
acterize a scenarios (as opposed to filters). However, similar to Netrix, the goal of Way-
pointRL is to bias exploration towards the specified scenarios. The waypoints serve as
intermediate rewards for the agent and therefore the agent automatically learns to explore
only those executions where the waypoints are satisfied. The waypoints are generic pred-
icates over the state space that a developer can design just with a high level knowledge
of the protocol. For example with Raft, a high level scenario would be observe a leader to
be elected. In general, the waypoints serve as intermediate goals that lead to ‘interesting’
states of the protocol where bugs are more likely.
In this chapter, we empirically demonstrate the exploration capabilities of BonusMaxRL
and also show that WaypointRL is effective in biasing exploration for 3 benchmarks -
RedisRaft, Etcd and RSL. Together, the combination of pure-coverage BonusMaxRL and
biased-exploration WaypointRL outperforms existing approaches in finding new bugs and
achieving high target coverage.
The rest of the chapter is organized as follows - Section 4.1 introduces the two new RL al-
gorithms BonusMaxRL and WaypointRL after presenting a background in Reinforcement
Learning. Then, in section 4.2, we model the distributed systems as a RL environment and
compare to the modelling of a Monitor from Chapter 3. Subsequently, we describe a general
methodology to describe waypoints for RL in Section 4.3 before presenting our evaluation
of the two algorithms in Section 4.5. Finally, we discuss existing work related to Reinforce-
ment learning and testing in Section 4.6.

4.1 Reinforcement Learning with Coverage Bonus and

Waypoints

To begin with some background, the standard RL agent [SB18] explores an environment
modelled as a Markov Decision Process (MDP). The agent interacts with the environment
for a fixed number of episodes. In each episode, the agent starts from a common initial
state and picks actions that lead to new states. We are interested in exploring the state
space of a distributed system and therefore model the system as a MDP where the state is
an abstraction of the states of each process and actions correspond to delivering messages
while crashing processes or introducing network partitions. Formally, we define an MDP
as follows,

Definition 6. A Markov Decision Process (MDP) is the tuple (S,A, s0, T ,R) where

• S defines the state space,
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Algorithm 1: Generic RL loop
Input: K : number of episodes, H : episode horizon, E: environment, A: agent
A.init()
for episode k = 1, · · · , K do

statek
1 ← E.reset()

A.newEpisode(statek
1)

for step h = 1, · · · , H do

actionk
h ← A.pick(statek

h, E.actions(statek
h))

statek
h+1, rewardk

h ← E.step(actionk
h)

A.recordStep(statek
h, actionk

h, statek
h+1, rewardk

h)
A.processEpisode()

• A is the action space,
• s0 ∈ S denotes the initial state,
• T (s, a, s′) : S ×A×S → [0, 1] - a transition probability function; we write T (s, a, s′)
to denote the probability of the transition s

a−→ s′,
• a reward functionR : S ×A×S → R that specifies a reward for a specific transition.

With RL, our goal is to learn a policy Π : S → ∆(A) that maps each state to a proba-
bility distribution over the actions A so that the expected discounted sum of rewards is
maximized.
Algorithm 1 describes a generic Reinforcement Learning loop. It takes as input the number
of episodes K , the horizon H , the environment being explored E, and an RL agent A. The
environment behavior is captured by its functions - reset to start a new episode from its
initial state, actions to return the available actions in the current state, and step to transition
in a new state according to the agent’s picked action.
Each episode starts from the environment’s initial state s0. At each step, the RL agent selects
the next action from the set of possible actions based on the policy, and observes the result-
ing state and reward. The agent is characterized by the following functions. newEpisode at
the beginning of each episode, recordStep after each step, pick determines the next action
and, processEpisode at the end of the episode. Different agents instantiate the functions
based on their respective policies. In general an agent implementation uses newEpisode to
reset the current episode trace, recordStep to append a transition to the trace, and updates
the policy using the full trace in processEpisode.
A popular RL algorithm is Q-Learning [WD92]. In Q-Learning, the agent keeps an estimate
Q(s, a) of the expected reward for a given state (s) and action (a) pair called Q-value. For
a given transition (s, a, s′), and its associated reward r(s, a, s′), Q-learning updates the
Q-value as follows:

Q(s, a) = (1− α)Q(s, a) + α(r(s, a, s′) + γ max
a′

Q(s′, a′))

where α, γ ∈ [0, 1] are hyper-parameters representing the learning rate and discount factor
respectively. Intuitively, each time the outcome of picking a state-action pair is observed,
its Q-value is updated based on the observed reward and estimated value of the next state.
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α determines how quickly theQ-value changes at each update, while γ defines how quickly
delayed rewards decrease in value.

We refer to the collection of all the Q-Values (one for each state-action pair) as the Q-Table.
The agent’s policy at a state s picks an action according to the values in Q(s, ·). Specifically,
we use an ϵ-greedy strategy: the agent picks the action with the highest Q-value at s with
probability 1−ϵ and picks a random action with probability ϵ, where ϵ is a hyper-parameter
of the algorithm.

For testing distributed systems, the main technical difficulty lies in defining the reward
function. As explained earlier, assigning rewards only to bad states is too sparse. We define
rewards in two steps: we provide an exploration bonus to the agent if they discover a new
state (Algorithm BonusMaxRL) and we usewaypoints to guide the search (AlgorithmWay-
pointRL). We describe these Q-table based algorithms next.

In both of these algorithms, we rely on backwards updates at the end of an episode to
propagate back the updated values faster and achieve higher efficiency in exploration. As-
suming states are, in general, not repeated throughout an episode, updating at each step
would require several episodes to back propagate an updated value to the initial state. Up-
dating backwards at the end of the episode, instead, allows for an updated reward to be
back propagated all the way in a single sweep, thanks to the order of the updates.

4.1.1 BonusMaxRL

Algorithm 2 shows the implementation of the BonusMaxRL exploration policy. The hyper-
parameters α, γ and ϵ are given as input. The pick function, which is the way the policy
chooses the next action, is the standard ϵ-greedy function. Among the state’s available
actions, with probability ϵ the policy will return a random action, and with probability
1 − ϵ the action with the highest Q-Value. The processEpisode function shows how the
policy is updated to maximize the novelty of observed states. Note that no reward is coming
from the environment and Q-Values updates are entirely based on the internal exploration
bonus of the policy. As explained earlier, BonusMaxRL contains two differences to the
updating the Q values against existing approaches.

First, the exploration reward is inversely proportional to the number of visits. Specifically
the reward is 1

t
where t is the number of visits. The visits are recorded by the policy in a table

V (s, a) and for every transition (s, a, s′), the visits are updated V (s, a) = t = V (s, a) + 1.
This reward mechanism rewards new states (with a reward of 1) and diminishes the reward
as the number of visits increases.

Second, the update rule of BonusMaxRL is

Q(s, a) = (1− α)Q(s, a) + α.max(1
t
, γ max

a′
Q(s′, a′))

Note the use of max instead of the traditional addition. With this update rule, the Q-Value
will now be an estimation based only on the best (less visited) reachable state from that
state-action pair. In practice, our algorithm will prioritize a path leading to a new state
while ignoring how many times the other states along the path have been visited. When
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Algorithm 2: BonusMaxRL: Positive reward based exploration algorithm
Input: α, γ, ϵ

def init(): // initialize the Q-Table
Q(s, a)← 1, V (s, a)← 0 for all s ∈ S, a ∈ A

def newEpisode(_): // reset the trace
trace← []

def pick(s, actions): // ϵ− greedy choice of action
x ∼ U(0, 1) // sample a value x uniformly at random (u.a.r.) from (0,1)
if x < ϵ then

return a ∼ U{actions} // return an element from actions chosen u.a.r.
else

return argmaxaQ(s, a)
def recordStep(state, action, newState, _):

trace← append(trace, (state, action, newState))
def processEpisode(): // backward traversal to update Q-Values

for i = length(trace) · · · 1 do

(s, a, s′)← trace[i]
t← V (s, a) + 1
V (s, a)← t
r ← 1

t

if i < length(trace) then
Q(s, a)← (1− α) ·Q(s, a) + α ·max(r, γ ·maxa′ Q(s′, a′))

else

Q(s, a)← (1− α) ·Q(s, a) + α ·max(r, 0)

no new states are reachable along a path, the value of its states will converge towards 0 as
the number of visits increase.
Our update rule, based onmaximum instead of sum of immediate and future rewards, would
not work to achieve an optimal policy in a traditional RL setting where a reward function
is provided. BonusMaxRL would possibly ignore smaller reward signals along trajectories
and therefore be unable to learn an optimal policy. For example, consider an environment
with a reward function such that two paths lead to the same reward signal. However one
of the paths is longer and contains a small additional reward along the way. BonusMaxRL
would learn to follow the sub-optimal shorter path despite the other longer path leads to
higher total reward. Despite the shortcoming, BonusMaxRL performs better when testing
distributed systems. The reason being, the greedy approach of prioritizing new immediate
states aligns well with the goal of pure-exploration.

4.1.2 WaypointRL

WaypointRL accepts as input a sequence of predicates [pred1, · · · , predn] where the last
predicate predn defines the target space to explore. By allowing the predicates to define the
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Algorithm 3:WaypointRL - init, newEpisode, pick, and recordStep methods
Input: predicates = {pred1, · · · , predn} , α, γ, ϵ

def init():
for i = 1 · · ·n do // init a Q-Table for each predicate

Qi(s, a)← 1, Vi(s, a)← 0 for all s ∈ S, a ∈ A

def newEpisode(initialState): // reset values and active predicate
trace← [], reached← ⊥
for i = n · · · 1 do

if predicatei(initialState) = ⊤ then

activePredicate← i
break

def pick(s, actions):
x ∼ U(0, 1)
if x < ϵ then

return random a ∼ U(actions)
else // pick greedy w.r.t. current predicate Q-Table

i← activePredicate
return argmaxa Qi(s, a)

def recordStep(s, a, s′, _):
if reached = ⊥ then // check the new active predicate

for i = length(predicates) · · · 1 do

if predicatei(s′) = ⊤ then

nextActivePredicate← i
break

if nextActivePredicate = n then

reached← ⊤
else // target reached, target predicate active for the rest
of the episode

nextActivePredicate← n
trace← append(trace, (s, a, s′, activePredicate, nextActivePredicate))
activePredicate← nextActivePredicate

waypoints, WaypointRL enables a semantic guided search of the state space. We set pred1
the starting predicate as true. The core insight behindWaypointRL is tomaintain a separate
exploration Q-table for each predicate, keep track of the current highest predicate satisfied
and use the corresponding Q-table to drive exploration. Updates to the Q-table consists
of an additional reward (apart from the exploration bonus) when the exploration satisfies
a higher predicate. In other words, driven by the BonusMaxRL exploration algorithm,
the agent will learn a policy to reach the target state space and subsequently maximize
exploration.
Algorithm 3 and 4 describe the methods that define WaypointRL. At each step we keep
track of the highest predicate satisfied in the current states (p - called activePredicate in
the Algorithm), use p to pick the action Qp(s, a), update the highest predicate (to p′) based
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on the resulting state s′ and record the transition (s, a, s′, p, p′) in the trace. These actions
are defined in the pick and recordStep methods.
In the processEpisode method defined in Algorithm 4, we update the Q-tables of the cor-
responding predicates as follows. First, we check if the trace satisfied the final predicate
and record the corresponding step. Then, we iterate backwards in the trace and, for each
transition (s, a, s′, p, p′), we update the corresponding Q-value Qp(s, a). The update con-
sists of two rewards, exploration bonus and an additional reward when a higher predicate
is satisfied. The update is equivalent to BonusMaxRL when the predicate does not change
i.e. p = p′ (only exploration bonus). However, when the new predicate p′ is higher in
the input sequence we define the reward based on whether in that trace we reached the
final target predicate or not (recorded by reachedF inal variable). If the trace did not reach
(reachedF inal = ⊥) then the reward is a constant 2. If it reached the final predicate
(reachedF inal = ⊤), the reward is 2 + γd2̇ where d denotes the proximity to the step
where the target was reached. The effect of our reward mechanism is two fold - (1) learn-
ing paths to satisfy higher predicates and (2) learning paths to reach the final target space
faster. The reward value 2 we use is a hyper parameter that can further be tuned.

Algorithm 4:WaypointRL - processEpisode method
Input: predicates = {pred1, · · · , predn} , α, γ, ϵ

def processEpisode():
reachedF inal← ⊥, reachedStep← 0
for i = 1 · · · length(trace) do // check if the episode reached the
target predicate

(s, a, s′, p, p′)← trace[i]
if p = n then // if yes, store the step

reachedF inal← ⊤, reachedStep← i
break

for i = length(trace) · · · 1 do // backward update for each step
(s, a, s′, p, p′)← trace[i]
t← Vp(s, a) + 1, Vp(s, a)← t
explR← 1

t
// visits-based bonus

if p = p′ ∨ p = n then // same predicate, update within a
single Q-Table

if i < length(trace) then
Qp(s, a)← (1−α) ·Qp(s, a) + α ·max(explR, γ ·maxa′ Qp(s′, a′))

else

Qp(s, a)← (1− α) ·Qp(s, a) + α ·max(explR, 0)
else // sequence transitioned to a different predicate

if p′ > p then progR← 2 else progR← 0 // predicate progress
bonus
if reachedF inal then // final predicate bonus

d← reachedStep− i− 1
finalR← γd · 2

Qp(s, a)← (1− α) ·Qp(s, a) + α ·max(explR, γ · (progR + finalR))
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A different Q-table for each predicate is initialized in the init method. The newEpisode
method resets the trace and the reached flag, and checks the active predicate for the initial
state. Pred1 is the constant ⊤ predicate. Therefore, when no predicates are satisfied, the
algorithm reverts activePredicate to 1. The pick method follows the ϵ-greedy approach
on the Q-table of the active predicate. In the recordStep method, the agent updates the
active predicate for the next state, eventually setting the reached flag to true if it reached
the target predicate, and it appends the transition (s, a, s′, p, p′) to the trace.

4.1.3 Intuition: Exploring a Cube world

To demonstrate the efficacy of our algorithms, let us consider a “cube world” consisting of
a set of 3 dimensional cubes that we want to explore. Each cube in the set is subdivided
into a three-dimensional cube of fixed dimension with width (w), breadth (b), and depth (d).
The state space is thus a 4-tuple S = (g, w, b, d) where g defines the cube number in the
set. An agent exploring the cubes starts at (0, 0, 0, 0), and at each cell can pick one of the
following actions: up, down, left, right, above, below, into, and reset_depth. The directions
will result in moving by one cell, into allows to transition through a door, if present, and
reset_depth brings back the agent to depth zero. The cubes are connected by special cells
that act as doors. At doors, the agent can move uni-directionally into the next cube by
picking the corresponding action. In our example, with 6 10×10×6 cubes, we place doors
such that (0, 5, 5, d) into−−→ (1, 0, 0, 0), (1, 5, 5, d) into−−→ (2, 0, 0, 0), and so on, for any depth d
of the cubes. The structure and actions of this example aim to reproduce dynamics that can
resemble the ones of a system’s execution, such as irreversible transitions (doors) or state
resets (reset_depth action).
We evaluate different exploration agents to explore the cubes and illustrate the outcome in
Figure 4.1. From the starting state, an agent takes a fixed number of steps (horizon) and
repeats this process for a given number of episodes. As clear from the Figure, BonusMaxRL
covers significantlymore cells than the random exploration agent.1 Additionally, the results
show that an RL agent can fail to completely cover cubes that are farther from the initial
state.
Let us suppose we are interested only in covering all cells of a specific cube (e.g. cube 3).
A trivial solution would be to bias exploration towards cube 3 with an additional bonus
reward when reaching the target cube. As shown in Figure 4.1b, the reward would not
help, since the agent is never able to reach cube 3 within the given episode budget and
hence it would never collect the additional reward. Alternatively, we can improve coverage
of cube 3 by introducing an abstraction on the state space. With the abstraction, the state
space that RL should cover is smaller and therefore we expect a better coverage of cube 3.
An example abstraction would be to ignore the depth co-ordinate, since it is irrelevant to
navigate through the cubes (the doors are located along the whole depth of the cubes). Now,
RL will explore more cubes but will not systematically explore all depths of each cube. In
other words, we lose the granularity of the step. Figure 4.1c shows the cube world coverage
of BonusMaxRL using the defined abstraction. It is able to reach and explore part of cube
3, but without covering its entire depth.

1We run the exploration with a horizon of 80 and for 5k episodes. The hyper parameters for BonusMaxRL
are α = 0.3, γ = 0.99
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(a) Random exploration

(b) BonusMaxRL exploration

(c) BonusMaxRL exploration with depth abstraction

(d) WaypointRL exploration (target cube 3)

Figure 4.1: Exploration of a 6 × 10 × 10 × 6 cube world, with a given episode budget,
using different agents. We plot the heatmap of the top of each cube. The intensity is the
sum of the visited cells along the depth of the cube, with the darkest color meaning all the
cells have been visited. Here we showcase several points. First, BonusMaxRL (b) achieves
better exploration than Random (a), covering more cells. Second, unbiased exploration
struggles to reach cubes away from the starting point (b). Third, chosing an appropriate
state space abstraction can lead to better coverage, but it can result in reduced capabilities
of systematically exploring a target subspace (c), while WaypointRL is able to effectively
bias the exploration towards the target cube and almost fully cover it (d).
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(a) BonusMaxRL exploration with depth abstraction

(b) WaypointRL cube 3 exploration

Figure 4.2: Detailed Exploration of cube 3 in the 6 × 10 × 10 × 6 cube world. Each grid
represents a depth level of the cube. The colored cells have been explored by the agent. (a)
BonusMaxRL using the depth abstraction (b) WaypointRL with reaching cube 1, 2, and 3
as waypoints. WaypointRL is able to explore almost all the cells of the cube.

Within the same budget, our solution WaypointRL achieves the best coverage in cube 3
(Figure 4.1d). In WaypointRL, we split the task into two. First, reaching the target space
(cube 3) and second, exploring once the target is reached. We use a different Q table for
each task and provide independent rewards. WaypointRL uses the corresponding Q table
to pick actions until cube 3 is reached and subsequently performs pure exploration. The first
task can be further split into subtasks by providing additional waypoints to guide the agent.
WaypointRL generalizes the reward strategy and accepts a set of target state predicates as
waypoints. The algorithm associates each waypoint with a specific Q-table that is used
to pick actions and update rewards. In our example, we provided reaching cube 1 and 2
as additional waypoints to guide the agent. With WaypointRL, we are able to reach the
target space faster, while retaining the granularity of the exploration step. Figure 4.1d shows
how WaypointRL avoids exploring the previous cubes and achieves efficient exploration
of the target subspace, while Figure 4.2 shows in detail the depths coverage of cube 3 for
BonusMaxRL with abstraction and WaypointRL. 2

As clear from the cube example, RL based agents effectively explore states and also are able
to bias exploration. The state space of a distributed program is analogous to the cubes. Dis-
tributed protocols have communicating processes that reach different states based on dif-
ferent message inter-leavings. Additionally, when there is a quorum of messages or when a
timeout occurs, the processes make irreversible progress (akin to moving through a door).
In Section 4.5 we will replicate similar results for 3 different distributed protocol implemen-
tations.

2We run the exploration with a horizon of 80 and for 5k episodes. The hyper parameters for WaypointRL
are α = 0.3, γ = 0.99
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4.2 Distributed program transition system

To use RL for exploring the state space of a distributed program, we need to define an
Environment that encapsulates the distributed program. Specifically, we should define the
step, reset and actions functions. The functions step and reset allow navigating through the
state space of a distributed system (transition functions). In this section, we first define the
concrete state and actions followed by the transition functions. Subsequently, we provide
general modelling guidelines for using RL on distributed systems.

We choose our actions to represent the network configurations. The reason for our choice
is due to the limitations of testing distributed system implementations — we only control
the network between the processes. specifically, we restrict the set of possible network
configurations to partitions between processes.

The state of the distributed system contains two components - an abstraction over local
states of processes and the partition configuration. Each abstract local state is identified by
a color that excludes process identifiers. An example state is {{c1} , {c1, c2}} where c1, c2
are abstract local states and one of the proceses with abstract state c1 is isolated from the
rest.

The state and actions we define are similar to the product transitions system of Netrix
(Section 3.2.1). In effect, we redefine an RLMonitor that complements the Netrix monitor.
However, unlike with Netrix, RLMonitor is not driven by the events of the processes but by
explicit actions that the RL agent invokes. Additionally, RLMonitor needs access to the state
of the processes, which is derived from the events in Netrix. To overcome the differences,
we reimplement the core infrastructure to run RL exploration (elaborated in Section 4.4).

4.2.1 Defining the transition system

Formally the state of the distributed system s ∈ S is a multi set of multi set of colors
c ∈ C. For example, consider the state {{c1} , {c1, c2}}. Our definition of a state succinctly
represents the two components - local state of processes and the network state. The colors
are abstractions over local state defined by a coloring function C : LS → C. For the
network state, each set defines the partitions. In the example, the first process with color
c1 is isolated from the remaining processes.

The set of actions is the set of all possible partition configurations given the current col-
oring of local states. For example from the state {{c1} , {c1, c2}}, the set of actions are
{{c1, c1} , {c2}} , {{c1, c1, c2}} , · · · . By picking an action, the exploration algorithm deter-
mines the new partition configuration in the resulting state. For example, with the action
{{c1, c1} , {c2}}, the two processes with current abstract state c1 are grouped in the same
partition and the third process c2 is isolated from them. However in the resulting state,
the colors of the processes may be different. Based on the action, we deliver messages al-
lowed by the partition configuration and drop the remaining. The new messages received
(or not), determines the new colors of the processes. More formally, we define an action as
follows. Given a state s with cardinalities of colors Cs : C → N, the actions enabled in s
are all possible multi-sets of multi-sets of colors where the cardinality of each color c ∈ C
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(a) (b) (c)

Figure 4.3: Evolution of the transition system of a distributed program. (a) Fine state space.
State is a map of local states and action is the set of messages to deliver and drop. (b) Coarse
state space without symmetry reduction. (c) Coarse state space with symmetry reduction

is exactly Cs(c). Then, a transition from s with some action can lead to a state s′ where the
cardinality of colors Cs′ is arbitrarily different from Cs.
Let us imagine a few simpler transition system models and use the drawbacks to motivate
our final transition system. The first model is illustrated in Figure 4.3a. The global state (3
blue dots with process identities) contains just a map of the complete local state and the
network configuration is stored as a set of active network links. The actions pick the next
set of active network links (identified by non red arrows between processes). The resulting
state (with process p3 in a different state) is obtained by exchanging messages only along
the active links. The granularity of actions is very fine with this model and therefore RL
needs more steps and episodes to learn to reach new states. For example, reaching a new
state with a quorum of messages requires learning to keep enough links active.
The second model (Figure 4.3b) introduces higher order actions where only partitions be-
tween processes are the valid network configurations. Each action corresponds to selecting
a partition between processes (depicted using boxes around processes). The resulting state
is obtained by exchanging only those messages within the same partition defined by the
action. Such a model considers process identities when comparing two different states. Dis-
tributed protocols however define transitions only based on the state of the process and not
the identities. Therefore, the drawback of the second model is to count redundant states
where processes’s local states are swapped around. We overcome the drawback by ignor-
ing process identities and only considering an abstract local state (as colors) — leading to
our original definition of a state (Figure 4.3c). An action re-defines the partition of colors
in the pre-state (isolating the left-most process from the rest), but the processes receiving
messages allowed by the new partition may result in colors changing in the post-state (e.g.,
the right-most process).

4.2.2 General modelling guidelines

RL exploration based algorithms perform best when the transitions in the state space are
predictable. Specifically, the non-determinism in the transitions follow an underlying prob-
ability distribution that can be learnt. Therefore, we allow RL to perform better by reducing
the degree of non-determinism in the transitions. The principle of making systems “more”
deterministic however is also common with other testing approaches. With a more deter-
ministic system, any bugs found can be easily replayed.
In this subsection, we will use the Raft protocol as an example to emphasize the guide-
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lines. To recall briefly, the protocol dictates the local state components of each process -
(1) the term number, (2) the state of the process {Candidate, Leader, Follower} and (3)
the process which it has voted for. In industrial implementations of Raft however, process
states contains lot more information. The color abstraction we use in our model picks only
specific components of the local state to be included in the abstraction.

In distributed systems, time is the major contributor for non-determinism. The next local
state of a process depends on an internal clock which is usually not part of the state. To re-
move this non-determinism, we fix the duration of time that passes between two transition
steps in our transition system.

Another source of non-determinism is the color abstraction. If the color abstraction ex-
cludes crucial state information, the transitions become unpredictable and therefore de-
crease the performance of RL based exploration algorithms. Consider the Raft protocol. If
we do not include the role of each process in the color, RL will not be able to differentiate
when a leader is elected or not. Furthermore, it will not able to learn to make progress and
commit entries without observing that a leader is necessary to do so. On the contrary, if we
include too much information in the color abstraction, we will explode the state space that
needs to be covered and also achieve sub-optimal outcomes. With redundant information
in the color abstraction, we will reverse the effect of the symmetry reduction. For example,
we should not include the process identifier in the color abstraction.

When modelling, a general principle that we rely on is that the state space should be
bounded. In other words, the set of possible colors should be bounded. For example, con-
sider the raft protocol. To recall, each process consists of a term number as part of its local
state. By including the term number in the color abstraction, we enable an infinite set of
colors. Furthermore, we introduce redundancy - consider two global states where the only
difference is an offset in the term number of each local states, only one of them is interest-
ing as the set of possible next states are the same modulo the offset. Therefore, the color
abstraction should bound the term number of each local state. In general, it is important to
balance the trade off when defining the color abstraction. Too much information explodes
the state space and too little information introduces unpredictability.

Protocol implementations contain more information as part of the local state than what is
defined in amodel of the protocol. The additional information corresponds to optimizations
introduced in the implementation. For example, most distributed protocol implementations
introduce snapshots. When defining the color abstraction, the developer has to ensure that
relevant parts of the additional state are also captured. As we will describe in Section 4.3,
capturing the additional information enables the developer to bias exploration and test the
parts of the code related to the optimizations.

4.2.3 Environment parameters

Our final transition system used in the implementation of our approach contains a few
more optimizations.

1. We introduce failure actions to crash and start processes. The color abstraction con-
tains an additional parameter to depict if the process is crashed or active.
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2. We introduce a finite number of actions where RL can inject new requests to the
system. With new requests, we are able to explore more states that wouldn’t be
possible otherwise. For example with raft, the commit index increases only when
new requests are committed.

3. We introduce a parameter ticks to control the time duration between two states. The
number of ticks is tied to the timeout parameters of the protocols. If too much time
passes between two states, then processes always timeout and if too little time passes
then processes never timeout. The parameter allows the test developer to control the
tradeoff and explore more states.

4. We introduce a bounded counter SameState in the global state representation, which
increments, up to its bound, if the state (colors configuration) did not change after
keeping the same partition. This incentivizes RL to explore the same state up to
the counter limit, considering them different states. Setting a short time duration
between states enables fine-grained interleavings of different partitions, potentially
leading to new states. On the other hand, the protocol might require multiple steps
in the same partitions configuration to progress. The counter allows to set a short
time duration while enabling RL to explicitly explore scenarios of partitions stability.

In total, to test an implementation, the developer has to specify the following parameters.
We will refer to these parameters in Section 4.5 when we list the concrete values used for
the different benchmarks.

1. The color abstraction. The components of the state that define the color of each
process.

2. Number of processes. The number of processes in the system.
3. Ticks. The ticks parameter explained above.
4. Max Same State. The maximum value for the SameState counter.
5. Max Crash Actions. The maximum number of crash actions allowed in an episode.
6. Max Concurrent Crashes. The maximum number of processes that can be crashed

at the same time.

4.3 Predicate sequences

Unlike with the cube world, the distributed system state space is significantly larger and
harder to visualize. Pure exploration is insufficient to cover all possible states. Therefore,
the need to bias exploration usingWaypointRL is all the more relevant. To bias exploration
in distributed systems, we will use state predicates to define both the target state space and
the intermediate rewards. In the Raft protocol, an example predicate would be - ‘there exists
a leader’. A predicate captures a set of executions scenarios. If we strengthen the predicate
- ‘there exists a leader in term 3’ - we will constrain the set of admitted scenarios.

A sequence of state predicates specified to the WaypointRL are similar to the filter condi-
tions of Netrix. While with Netrix, the filters are enforced in every execution, the state
predicates merely act as guidance posts to be used byWaypointRL. Semantically, the pred-
icate sequences are used to provide rewards and do not directly alter the set of actions
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possible from a given state. Syntactically, the state predicates are equivalent to the condi-
tions of the Netrix filters.
While both Netrix filters and WaypointRL predicate sequences allows the developer to
describe scenarios, they differ in terms of effort. WaypointRL predicate sequences are
more high level and easier for the developer to describe. In contrast, Netrix filters are low
level and requires the developer to carefully construct the set of events that describe the
scenario.
Overall, as mentioned in the Introduction, biasing exploration towards specific scenarios
achieves two purposes. The developer gains confidence in the code when there are no
bugs found and if there are bugs found, biased exploration will reliably reproduce the bugs.
We rely on the developers understanding of the protocol to provide target predicates. In
this section, we list example predicates for Raft and provide general guidelines to derive
predicates for distributed protocols.

4.3.1 Deriving target predicates

As clear from the example, our main source of target predicates is the abstract protocol
specification. The developer’s understanding of the protocol specification is sufficient to
construct scenarios and use them to bias exploration. However, a developer will have to
instantiate the predicates by assessing the data structures used in the implementation.

Hierarchy Name Description Intermediate Predicates

AllCommitted(x) At least x committed entries
in the log of all processes AllCommitted(x - i)

ProcessesInTerm(n, t) At least n processes are
in term t ProcessesInTerm(n, t-1)

CommittedEntriesInTerm(x, t) At least x committed entries
in the logof a process in term t

CommittedEntriesInTerm(x - i, t)
LeaderInTerm(t)

LeaderInTerm(t) A process is in state ’leader’
in term t ProcessesInTerm(n, t)

LogDiff(x) A gap of x entries between any
two processes logs LogDiff(x - i)

LogCommitDiff(x) A gap of x entries between any
two processes committed logs

LogDiff(x - i)
LogCommitDiff(x - i)

ProcessInRole(r) Any process in role r -

ProcessInRoleTerm(r,t) A process in role r
and in term t ProcessesInTerm(1, t)

Table 4.1: Generic predicates for Raft

In general, a scenario of a distributed protocol contains segments of two kinds. One where
processes are in sync and one where processes are out of sync. Using this insight, we
derive three classes of predicates - ones which describe processes in sync, ones which de-
scribe processes out of sync, a combination of the two. We will refer to the examples of Raft
protocol listed in Table 4.1. Progress occurs when processes are in sync - by committing en-
tries (CommittedEntries(2)), having a stable leader (LeaderInTerm(2)). However, progress
stalls when processes are out of sync - processes in different terms (ProcessesInTerm(1,2)
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and ProcessesInTerm(1,4)), difference in logs (LogDiff(2)). The interesting scenarios are the
ones where we combine the two. For example, a leader in a higher term (ProcessInRo-
leTerm(leader,3) and ProcessesInTerm(1,1)), difference in committed entries (LogCommit-
Diff(2)). Note that by sync or out of sync, we are referring to the abstract notion captured
in the states of each process and not the concrete network state.
Note that our list of predicates is not exhaustive and the developer is unconstrained while
listing target predicates. Apart from the protocol, the developer can derive scenarios based
on implementation specific optimizations. As mentioned in Section 4.2.2, the implementa-
tion introduces some specific optimizations to the protocol such as snapshots and recovery.
An example scenario would be to force a snapshot - ‘process with snapshot index 2’. Note
that these predicates can be combined with those derived from the protocol.

4.3.2 Specifying intermediate predicates

When biasing exploration using a target predicate, the ability of WaypointRL to effectively
bias depends on how many scenarios the target predicate captures. As we will show in our
evaluation, when the predicates are easy to satisfy WaypointRL out performs other ap-
proaches with just one target predicate. However, a more constrained predicate is harder
to bias towards. Therefore,WaypointRL accepts additional intermediate predicates as way-
points (p2, · · · pn−1 in Algorithm 3) to improve the effectiveness of biasing exploration. The
intermediate predicates are used to split the task of reaching the target predicate to provide
intermediate rewards to RL. For those target predicates with intermediate waypoints, we
will empirically show that providing more intermediate predicates improves the effective-
ness of biasing exploration. The question now arises on how to derive the intermediate
predicates given a set of target predicates.
In Table 4.1, we also list candidates for intermediate predicates. In general, predicates that
are true on every execution path towards the target space are good candidates. For example,
consider ProcessesInTerm(1, 3) where we require a process in term 3. To achieve the target,
we need ProcessesInTerm(1, 2) to be true first which serves as an intermediate predicate.

4.4 Implementing BonusMaxRL and WaypointRL

We implement the two algorithms in go 3 programming language (open-sourced 4).
In the process, we reimplement the core infrastructure to capture in-transit messages and
read the state of the nodes. While Netrix iterations are driven by the events occurring in
the nodes, BonusMaxRL and WaypointRL take steps at a fixed frequency independent of
the events in the nodes. Furthermore, BonusMaxRL and WaypointRL require direct ac-
cess to the states of the nodes which, in the case of Netrix, was inferred from the events
observed. The re-implementation derives insights from Netrix. Specifically, we reuse the
instrumentation flow that includes the client libraries to capture messages, and the end-
points that receive messages.

3https://go.dev
4https://github.com/zeu5/dist-rl-testing
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Snippet 4.1: Partitioned environment interface definitions
type PState interface {

NodeState(int) NState
Messages() []Message
Requests() []Request
CanDeliverRequest() bool

}

type PartitionedEnvironment interface {
Reset() (PState, error)
Tick(*StepContext) (PState, error)
DeliverMessages([]Message, *StepContext) (PState, error)
DropMessages([]Message, *StepContext) (PState, error)
ReceiveRequest(Request, *StepContext) (PState, error)
StartNode(int, *StepContext) (PState, error)
StopNode(int, *StepContext) (PState, error)

}

Our implementation introduces a generic interfaces for an RL environment (Environment),
agent and policy (Policy). We extend the interfaces into concrete implementations as fol-
lows,

• PartitionedEnvironment that captures the transition system described in Section 4.2
and extends Environment

• BonusMaxRLPolicy implements BonusMaxRL and extends the generic Policy
• HierarchyPolicy implements WaypointRL and also extends the generic Policy

In addition to these and for the purpose of comparison, we implement a RandomPolicy

that chooses actions uniformly at random.

Partitioned Environment

While the policies are agnostic to the concrete protocol implementation we will be testing,
the environment is not. The PartitionedEnvironment class is abstract and requires hooks to
fill in the details of a concrete implementation. The hooks allows PartitionedEnvironment
to construct the state (including colors, etc) and perform actions (deliver messages, start,
stop, etc).
Snippet 4.1 lists the functions that represent the hooks needed to test an implementation.
The functions described along with the intended functionality are as follows,

• Reset - to reset all the nodes to their initial state
• Tick - to let one unit of time pass. In the process, any new messages intercepted are
recorded into the new state. (Can be logical time or system time)

• DeliverMessages - to deliver the messages to the respective messages
• DropMessages - to update the state by removing the respective messages
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• ReceiveRequest - to deliver a client request
• StartNode - to start a proceses
• StopNode - to stop a process

Note that all functions return a state PState that contains all the necessary information to
construct the state presented to RL. The details of how PState state information is captured
is abstracted to allow for customization corresponding to each protocol implementation.
For example, the endpoints to read the state of a node is specific to each implementation.

4.5 Evaluation

We evaluate the two algorithms BonusMaxRL and WaypointRL on 3 benchmarks - RSL,
Etcd, RedisRaft. In all our experiments, we compare against two baseline approaches -
Random and NegRL [Muk+20]. We implement5 the algorithms in the Go programming
language. In addition to the algorithms, our codebase consists of thin shims around the
implementations to enable testing. The shim allows RL to read the state and execute the
actions chosen at each step.
Our Benchmarks are (1) RSL - a re-implementation of Azure RSL 6. The algorithm is a vari-
ant of Paxos and powers distributed services in the Azure cloud. (2) Etcd 7 - an implemen-
tation of the Raft protocol that powers a popular distributed key value store. (3) RedisRaft 8
a distributed version of the popular in-memory key value store that uses the Raft proto-
col. We re-implement RSL to enable easy instrumentation and testing on a common Linux
platform. The original implementation is built to run on Windows systems.
Our baseline approaches are pure Random exploration which picks the next actions uni-
formly at random and NegRL which relies on a negative reward. We implement the NegRL
policy in our system. It performs Q-values updates with negative rewards at each step and
uses the softmax function to pick actions. The original description of the reward is a con-
stant value of -1. However, the authors of NegRL describe NegRLVisits, an alternative
version which proves to be empirically better. We compare against NegRLVisits where
the reward for a step that reaches a state s is −visits to state s.
With our evaluation, we aim to answer the following research questions.

RQ1 Are theoretically optimal algorithms efficient in practice?
RQ2 Can we achieve better coverage than existing approaches with BonusMaxRL?
RQ3 Can we bias exploration towards a target state space with WaypointRL?
RQ4 Does RL based exploration approaches help uncover bugs?

ForRQ1, we show that theoretical optimal algorithm UCBZero fails to achieve good cover-
age in practice. For RQ2, we find that NegRLVisits achieves better coverage than Bonus-
MaxRL in RedisRaft and Etcd benchmarks. However, BonusMaxRL performs better than
NegRLVisits in the RSL benchmark. The answer toRQ3 is YesWaypointRL explores more

5https://github.com/zeu5/dist-rl-testing
6https://github.com/Azure/RSL
7https://github.com/etcd-io/raft
8https://github.com/RedisLabs/redisraft
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unique states in the target space than pure exploration approaches for 20 out of 26 differ-
ent target predicates. Furthermore, when the target states are harder to reach, we show
that we can improve the coverage by adding more intermediate predicates. For RQ4, we
find 13 bugs with WaypointRL as opposed to 11 with Random, 10 with BonusMaxRL and
7 with NegRLVisits. Additionally, for 11 of these bugs, we are able to replicate the bugs
with higher average frequency using WaypointRL than other approaches. Furthermore, a
developer gains confidence even when testing with WaypointRL does not lead to any new
bugs. The rest of the section is as follows - We first describe the coverage metric and the
test harness parameters. Then, we present our evaluation for the three research questions.

4.5.1 Test setup

In our experimental results, we present comparison between different approaches using
a coverage metric. The coverage metric measures the number of unique abstract states
observed in each of the benchmarks. Specifically, the abstract state we measure is a multi-
set of colors s ⊆ (C ×N)n where colors are abstract local states of each process. While the
concrete abstraction of local states differs between the different benchmarks, we follow the
same principles when abstracting. Namely, the color abstraction includes

1. A round number (term, ballot, round, etc.)
2. The role (leader, proposer)
3. The log of requests
4. A commit index (commit, number of decided entries)
5. Current vote or leader

To run experiments, we need to tune two sets of parameters. Ones related to the environ-
ment and ones related to the exploration algorithm. Here we list the concrete values used
for both sets. The values for the environment parameters described in Section 4.2 are as
follows,

1. Number of nodes in the system - 3
2. Ticks between steps, controls the time duration passed when executing an action on

the system - 4 units
3. SameState counter limit - 5
4. Maximum number of crash actions in an episode - 3
5. Maximum number of nodes to be crashed at the same time - 1

The parameter values for the RL based polices described in Section 4.1 are as follows (the
values for NegRLVisits are chosen according to the recommendations of the authors),

1. The learning rate α is 0.2 for both BonusMaxRL and WaypointRL, and 0.3 for Ne-
gRLVisits.

2. The discount factor γ is 0.95 for both BonusMaxRL and WaypointRL, and 0.7 for
NegRLVisits.

3. The ϵ-greedy values for both BonusMaxRL and WaypointRL is 0.05

Our experiments are run for 10000 episodes or 8h whichever occurs first. Each episode
has an horizon of 25 in Etcd and RSL (max 250k total steps) and 50 in RedisRaft (max 500k
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Figure 4.4: The pure coverage comparison between UCBZero, BonusMaxRL and Random
for the two benchmarks. Each plot contains the coverage vs time steps

total time steps). Horizon is set such that we are able to reach all possible target states
and the difference in horizon is due to the different granularity of steps supported by the
implementation. However, some episodes might terminate without running for the entire
horizon due to a failure in the underlying system. Therefore, when comparing different
approaches, we plot the coverage metric against the number of time steps passed instead of
number of episodes. We conduct at least 10 trials for each benchmark and report the average
numbers. To claim statistical significance in higher coverage, we perform the standard
statistical test - Mann-Whitney U test with a threshold of > 0.05.

4.5.2 RQ1: Are theoretically optimal algorithms efficient in prac-

tice?

The problem of state space exploration without explicit rewards was first introduced in
[Jin+20] and later work provides theoretical optimal algorithms [ZMS20]. In the reward
free exploration setting, the goal of the RL agent is to achieve high coverage of the state
space. In each iteration/episode, the RL agent takes H steps (horizon) to traverse through
a state space of size S with at most A actions possible at each step.

One solution to the problem is UCBZero [ZMS20] which achieves an ϵ-optimal policy to
explore after running the RL algorithm for O(H5SA/ϵ2) iterations. Here ϵ denotes the
distance from the true optimal policy. Similar to BonusMaxRL, UCBZero relies on a de-
caying reward function to achieve the optimal policy - an idea we borrow for the design of
BonusMaxRL.

In practice, however, the algorithm fails to perform and cover the state space due to the large
number of iterations required (5th degree polynomial in the number of steps) to achieve
an optimal policy. Even for a small number of steps (horizon) of 25/iteration, the sample
complexity of UCBZero is in the order of millions. Figure 4.4 illustrates the coverage of
UCBZero in comparison to pure random exploration and BonusMaxRL for two bench-
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Benchmark Random BonusMaxRL NegRL
RedisRaft 27081.9 ± 2627.31 32818.4 ± 3017.32 33433.2 ± 2972.34

Etcd 19179.3 ± 106.26 22202.7 ± 137.75 24898.6 ± 97.40

RSL 678.9 ± 36.43 2020.9 ± 190.67 751.2 ± 37.24

Table 4.2: Final average coverage values for the different benchmarks.

marks (Etcd 9 and RSL 10). Given the fixed number of iterations (10000), UCBZero performs
worse than random.
The reason for low performance in a practical setting is because UCBZero performs explo-
ration similar to a depth-first search. For a short number of iterations, this severely restricts
the number of new states that it observes. From an initial random trace, UCBZero repeats
the trace several times until the exploration bonus diminishes sufficiently (a state has been
visited several times). Only then, UCBZero explores a different trace.
The other drawback of using UCBZero for exploring the state of a distributed systems is
the unavailability of the required parameters. It is unclear how we can bound the size of
the state space S and the number of actions A for a distributed system.
Therefore, we borrow the intuitions behind the reward functions to develop new algorithms
BonusMaxRL and WaypointRL to achieve high coverage in practical settings.

4.5.3 RQ2: Can we achieve better coverage with BonusMaxRL?

We observe that RL based approaches achieve significantly better coverage than random
exploration. Between the two RL approaches, BonusMaxRL achieves better coverage than
NegRLVisits approaches in the RSL benchmark and NegRLVisits has better coverage in
the remaining 2. We present in Figure 4.5 the coverage of the different exploration algo-
rithms for RedisRaft and RSL benchmarks. The results of the Etcd benchmark are similar
to RedisRaft and we refer the reader to Appendix for details. We believe that the high
negative reward in NegRLVisits provides a very strong incentive for pure exploration and
hence the better overall coverage. Table 4.2 contains the final average coverage numbers
of the three approaches for the different benchmarks. Overall, BonusMaxRL covers 21%,
15.7%, 197% more states than Random in the RedisRaft, Etcd and RSL benchmarks respec-
tively and 169% more than NegRLVisits in the RSL benchmark. NegRLVisits covers 12.1%
more states than BonusMaxRL in Etcd benchmark. Both NegRLVisits and BonusMaxRL
achieve similar coverage in RedisRaft benchmark.
While NegRLVisits is able to achieve higher coverage than BonusMaxRL (except in the
RSL benchmark), it is unclear if the reward mechanism can be adopted to bias exploration.
Our rewardmechanism to bias relies on providing a constant positive reward. NegRLVisits
does not limit the Q-values within a fixed range, they will get more and more negative with
the increasing number of visits. In this scenario, it would be difficult to control the tradeoff
between reward exploitation and further exploration. A low constant reward value could

9https://github.com/etcd-io/raft
10https://github.com/Azure/RSL
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Figure 4.5: The pure coverage comparison between NegRLVisits, BonusMaxRL and Ran-
dom for the different benchmarks. Each plot contains the average coverage vs time steps

be unable to balance the negative rewards and hence fail to learn, while a high value might
immediately drive the policy to converge to that path, giving up further exploration and
optimization. Therefore, WaypointRL is based on the principles used in BonusMaxRL.

4.5.4 RQ3: Canwe bias exploration towards a target state spacewith

WaypointRL?

Yes, given a sequence of predicates, we are able to bias exploration to cover more states
in the target coverage with WaypointRL. As motivated in Section 4.3, we use a total of
26 target predicates for all the benchmarks together in order to bias exploration. Table 4.3
describes the set of target predicates that we use to bias for the two Raft benchmarks and
RSL benchmark. Asmentioned in Section 4.3, the predicates belong to classes which require
processes to be in sync, out of sync or a combination of both.

For each target predicate, we measure the number of unique states observed that appear in
the episode after the final target predicate has been satisfied. Table 4.4 compares the tar-
get coverage of WaypointRL, BonusMaxRL, NegRLVisits and Random exploration. For
20 out of 26 predicates, we observe that the biased exploration WaypointRL guided by
the predicate achieves significantly more states than all the unbiased approaches - Bonus-
MaxRL, NegRLVisits and Random. Furthermore, the difference in the biasing is more stark
for those target predicates where the number of permitted scenarios is low. For example,
consider the predicate LogCommitDiff3 in RedisRaft which requires that there are two pro-
cesses whose commit indices differ by 3. WaypointRL on average covers 97x, 94x, 147x
more states than BonusMaxRL, NegRL and Random respectively. For the predicates for
which we did not achieve improved coverage, we can try to speculate about the reasons. A
possible reason is that a predicate might be too easy to reach for the unbiased baselines. In
these cases, the impact of learning a policy to reach the predicate is reduced, while, on the
other hand, it can reduce the variability of the explored executions. This could be the case
for a predicate as OneInTerm3, which can easily happen during any execution. Other pred-
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Target Predicate Description

Raft (RedisRaft, Etcd)

OneInTerm(3) At least one process in term 3
AllInTerm(2) All the processes simultaneously in term 2
TermDiff(2) A difference of 2 terms between any two processes
CommitEntries(2) At least 2 committed entries in the log of a process
EntryInTerm(2) At least 1 committed entries in the log of a process in term 2
LeaderInTerm(2) A process is in state ’leader’ in term 2
LogDiff(1) A gap of 1 entry between any two processes logs
LogCommitDiff(3) A gap of 3 entries between any two processes committed logs
OneLeaderOneCandidate A process in state "leader" and another in state "candidate"
RSL

AllBallot(3) All processes reach ballot (round) 3
AnyBallot(3) Any process in ballot 3
AnyDecided(3) Any process decides 3 entries
AnyDecree(2) Any process reaches decree 2
BallotDiff(2) A difference of 2 ballots between two active processes
EntryBallot(2) An entry in the log in ballot 2
PrimaryBallot(2) A process becomes primary (leader) in ballot 2
DecidedDiff(3) A difference of 3 decided log entries between any two processes

Table 4.3: Target predicate descriptions used to bias exploration in Raft and RSL bench-
marks

icates might be simply too hard to reach. In such cases, specific knowledge of the protocol
implementation details could help with designing better intermediate predicates.
For each predicate sequence, we list the values for the non parametric Mann Whitney U
statistical test. The test determines if two samples are from different statistical distributions.
The test outputs a value which if > 0.05 then we reject the hypothesis. We report the test
values in Table 4.5 for all the target predicates where we compare WaypointRL vs other
pure exploration approaches.

Sensitivity to intermediate rewards In Section 4.3, we describe a methodology to list
intermediate predicates to bias the exploration along with example predicates for Raft (Ta-
ble 4.1). The intermediate predicates help WaypointRL to reach the target space faster and
improve the accuracy especially when the target space described by a predicate is hard
to reach. We list in Table 4.6 the target coverage with increasing number of intermediate
predicates for three target predicates. The result is also visualized in Figure 4.6 for two
of the target predicates. Let us consider the example of LogCommitDiff(3), where we use
LogDiff(1), LogDiff(2), and LogDiff(3) as intermediate predicates. We observe that the bias-
ing without intermediate predicates fails to improve coverage over the unbiased baselines
in the given time budget. On the other hand, when using respectively 1 (LogDiff(1)) and
all the 3 intermediate predicates, the final coverage is significantly better, showing that
intermediate predicates can play a key role in the biased exploration efficiency and per-
formance. Interestingly, by providing LogDiff(1) as the target predicate, we still achieve
improved coverage over the unbiased baselines, showing that even partial biasing can po-
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Benchmarks No.Pred PredHRL BonusMaxRL NegRLVisits Random
RedisRaft

OneInTerm(3) 1 15934 ± 3040 16640 ± 2033 17214 ± 2103 14370 ± 1810
AllInTerm(2) 1 23695 ± 3810 7660 ± 945 8437 ± 876 6401 ± 794
TermDiff(2) 1 23478 ± 2917 22214 ± 1973 23323 ± 2149 20112 ± 2007
CommitEntries(2) 1 24656 ± 3995 4894 ± 552 5325 ± 741 2835 ± 530
EntryInTerm(2) 3 22758 ± 5457 8267 ± 272 10114 ± 418 9812 ± 662
LeaderInTerm(2) 1 22533 ± 5418 8971 ± 299 10834 ± 410 10361 ± 684
LogDiff(1) 1 30779 ± 3365 5755 ± 713 5958 ± 825 3332 ± 606
LogCommitDiff(3) 2 14960 ± 4100 154 ± 63 158 ± 52 102 ± 41
OneLeaderOneCandidate 3 1301 ± 1360 482 ± 120 471 ± 158 356 ± 93
Etcd

LogCommitGap(3) 4 13336 ± 664 5692 ± 132 6411 ± 112 4717 ± 92
OneInTerm(4) 3 33011 ± 826 29545 ± 258 29739 ± 167 25309 ± 200
MinCommit(2) 3 29862 ± 885 25015 ± 193 24031 ± 110 21765 ± 195
TermDiff(2) 1 15289 ± 885 4673 ± 162 7792 ± 66 4879 ± 142
LeaderInTerm(4) 3 15727 ± 1157 10684 ± 142 11171 ± 215 9571 ± 101
AtLeastOneCommitInTerm(2) 3 32709 ± 1025 28169 ± 262 25863 ± 176 23903 ± 314
OneLeaderOneCandidate 3 35403 ± 958 36178 ± 142 32891 ± 208 29021 ± 307
LogGap(2) 2 37832 ± 3485 31372 ± 314 33040 ± 115 27445 ± 238
AllInTerm(5) 3 10346 ± 1121 8202 ± 65 7888 ± 122 6682 ± 94
RSL

AnyBallot(3) 1 1573 ± 174 837 ± 75 301 ± 34 264 ± 31
AllBallot(3) 1 1021 ± 57 493 ± 92 102 ± 14 101 ± 16
EntryBallot(2) 1 1016 ± 460 1954 ± 131 698 ± 27 658 ± 48
AnyDecree(2) 1 1068 ± 119 663 ± 52 188 ± 19 155 ± 23
BallotDiff(2) 1 19 ± 5 12 ± 6 2 ± 2 3 ± 3
AnyDecided(3) 1 856 ± 93 492 ± 46 134 ± 18 110 ± 16
PrimaryInBallot(2) 2 607 ± 66 467 ± 54 232 ± 22 196 ± 30
DecidedDiff(3) 3 113.7 ± 46.8 22.7 ± 10.1 5.7 ± 3.1 2.9 ± 1.5

Table 4.4: Coverage results - the table shows the target coverage results in our benchmarks.
Each row contains the target predicate, the number of predicates in the sequence used
by WaypointRL (excluding the first one), and, for each algorithm, the average number of
unique explored states (± Standard Deviation).
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Benchmarks BonusMaxRL NegRLVisits Random

RedisRaft

OneInTerm3 0.70 0.86 0.01
AllInTerm2 8.25e-06 8.25e-06 8.22e-06
TermDiff2 0.14 0.40 4.46e-03
CommitEntries2 8.25e-06 8.25e-06 8.25e-06
EntryInTerm2 8.25e-06 8.25e-06 8.25e-06
LeaderInTerm2 8.25e-06 8.25e-06 8.25e-06
LogDiff1 8.25e-06 8.25e-06 8.25e-06
LogCommitDiff3 1.25e-05 1.25e-05 1.25e-05
OneLeaderOneCandidate 6.91e-03 5.17e-03 9.07e-05
Etcd

LogCommitGap3 9.13e-05 9.13e-05 9.13e-05
OneInTerm4 9.13e-05 9.13e-05 9.13e-05
MinCommit2 9.13e-05 9.13e-05 9.08e-05
TermDiff2 9.13e-05 9.13e-05 9.13e-05
LeaderInTerm4 9.13e-05 9.13e-05 9.13e-05
AtLeastOneCommitInTerm2 9.13e-05 9.13e-05 9.13e-05
OneLeaderOneCandidate 0.98 9.13e-05 9.13e-05
LogGap2 2.91e-04 0.01 9.13e-05
AllInTerm5 1.40e-03 1.41e-03 9.13e-05
RSL

AnyBallot3 9.08e-05 9.03e-05 9.08e-05
AllBallot3 9.13e-05 9.13e-05 9.08e-05
EntryBallot2 0.99 0.07 0.05
AnyDecree2 9.08e-05 9.08e-05 9.08e-05
BallotDiff2 0.02 8.19e-05 9.81e-05
AnyDecided3 9.08e-05 9.08e-05 9.08e-05
PrimaryInBallot2 2.91e-04 9.13e-05 9.08e-05

Table 4.5: Statistical tests results for the three benchmarks. For each predicate, we present
the values of MannWhitney U test. If the values are≤ 0.05 thenWaypointRL outperforms
the compared approach.
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Benchmark Target predicate Predicates Sequence Target Coverage

RedisRaft LogCommitDiff(3)

LogCommitDiff(3) 264 ± 99
LogDiff(1), LogCommitDiff(3) 18309 ± 2820

LogDiff(1), LogDiff(2), LogDiff(3), Log-
CommitDiff(3)

17287 ± 3102

LogDiff(1) 1578 ± 931

RedisRaft EntryInTerm(2) EntryInTerm(2) 22468.1 ± 5295.2
OneInTerm(2), LeaderInTerm(2), EntryIn-
Term(2)

28173.7 ± 6935.9

RSL DecidedDiff(3)
DecidedDiff(3) 26.4 ± 13.2
DecidedDiff(2), DecidedDiff(3) 173.1 ± 70.1

DecidedDiff(1), DecidedDiff(2), Decided-
Diff(3)

113.7 ± 46.8

Table 4.6: Improvements with intermediate predicates. For each target predicate (one ex-
ample from each benchmark) and the sequence used to bias, we report the average final
target coverage (± Standard Deviation). We use the same classes of predicates described in
Table 4.3, eventually instantiated with different values.
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Figure 4.6: Different versions of predicate sequences for the same target coverage. For the
predicate sequences, the legend specifies the target predicate and, between square brackets,
the number of predicates in the sequence excluding the first one (true predicate).

– 66 –



Bug WaypointRL BonusMaxRL NegRLVisits Random

RedisRaft

RaftRestoreLog 5704.6 (AllInTerm(2)) 6499.8 5056.2 4897.5
HandleBeforeSleep 23.4 (LeaderInTerm(2)) 13.8 15.1 7.4
ConnIsConnected 1.3 (LogDiff(1)) 0.5 - 4.5

RaftAppendEntry 9.8 (EntryInTerm(2)) 0.7 2.8 5.7
RaftBecomeFollower 2.2 (AllInTerm(2)) 0.2 0.8 1.5
RaftApplyEntry 0.8 (LogDiff(1)) 0.1 - 0.4
RaftDeleteEntry 0.1 (LeaderInTerm(2)) - - -
InconsistentLogs 2.0 (AllInTerm(2)) 0.4 0.2 0.2
ReducedLogs 7.1 (EntryInTerm(2)) 2.2 2.1 1.9
ModifiedLog 0.3 (LogDiff(1)) 0.1 - 0.1
Etcd

IncorrectLogRestore 0.1 (OneLeaderOneCandidate) - - -
NilSnapshotPanic 0.3 (LogCommitGap(3)) - - 0.2
RSL

InconsistentLogs 167.2 (AnyBallot(3)) 51.1 8.3 8.0

Table 4.7: Average occurrence of bug comparing biased exploration with different pure-
exploration algorithms. The column for WaypointRL reports the highest average occur-
rence of the bug and the corresponding target predicate used to bias.

tentially improve a different target coverage.

4.5.5 RQ4: Does biased exploration help uncover bugs?

We evaluate the ability of different approaches to find bugs by measuring the number of
bugs and the average occurrence of each bug. As shown in Table 4.7, we find that Way-
pointRL is better at uncovering new bugs when biasing exploration towards developer de-
fined predicates. Furthermore, when other approaches uncover the same bug, WaypointRL
reliably reproduces the bug more frequently that the other approaches. The table lists the
average occurrence of each bug. Furthermore, biased exploration is able to find all the bugs
while pure exploration is only able to find some.

RedisRaft We are able to identify 3 new bugs and reproduce 7 known bugs in RedisRaft.
Table 4.8 provides a short description of the bugs. We capture two classes of bugs for Re-
disRaft when testing with using BonusMaxRL and WaypointRL. First, bugs that violate a
safety property of the protocol during an episode. Second, an unexpected failure in the im-
plementation during the episode. For the first class of bugs, we are able to capture the trace
and identify any issues. However analyzing an unexpected failure in the implementation
code requires a deeper understanding of the implementation codebase.
UsingWaypointRL, we are able to identify all bugs. However, pure exploration approaches
fail to replicate one bug. Furthermore, for some bugs, the higher average occurrence us-
ing the predicate for biased exploration correlates with the bug description. For example,
RaftAppendEntry occurs when biasing exploration to add an entry to the log, RaftBecome-
Follower bug is more common when biasing exploration towards states where all processes
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Bug Category Description

RaftRestoreLog Crash Occurs when restoring log from file
HandleBeforeSleep Crash When flushing log entries to file
ConnIsConnected Crash When connecting to a node added to

the cluster
RaftAppendEntry Crash When adding a new entry to the log
RaftBecomeFollower Crash When updating the state to follower

upon receiving an append entries mes-
sage

RaftApplyEntry Crash When applying a committed entry
onto the state machine

RaftDeleteEntry Crash When removing an uncommitted en-
try from the log

InconsistentLogs Safety violation Two committed logs differ in an entry
ReducedLogs Safety violation A process loses a committed entry in

the log
ModifiedLog Safety violation A process changes a committed entry

in the log

Table 4.8: Bug descriptions for RedisRaft benchmark along with the category of bug. Crash
bugs are unexpected failures in the process and Safety violation bugs are those where the
trace violates safety properties

transition to term 2.

Etcd Etcd is a robust and well tested implementation that has been used in production
for many years. Despite the robustness, we replicate 1 known bug and find 1 new bug with
etcd with our testing efforts. The new bug, that occurs due to incorrect log restoration, is
uncovered by biased exploration as well as by random exploration with the same frequency.
However, the known bug is uncovered only using biased exploration.

RSL We find one new bug (safety violation) in our RSL implementation where two pro-
cesses decide on different values. The bug is caught by all approaches but replicated more
frequently than other approaches using biased exploration.

4.6 Related Work

Reinforcement Learning for Testing.

Two closely related works apply Q-learning techniques to test distributed or concurrent
programs. QL [Muk+20] applies Reinforcement learning techniques to test concurrent mes-
sage passing and sharedmemory programs. They introduce a novel rewardmechanism that
provides strong incentives for exploration. However it is unclear if the reward mechanism
can be extended to bias exploration. Mallory [Men+23b] utilizes the reward mechanism of
QL to improve the principles of Jepsen. Mallory relies on Q-learning to pick the next set of
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failures and maximize coverage of all possible failure scenarios. In our work, we combine
the modelling efforts of both these works to define new algorithms and introduce a new
mechanism to bias exploration and find new bugs.
We note that RL has been used in testing in orthogonal ways, e.g., in sequential fuzzing
[Red+20], in learning appropriate parameters [Wan+21], synthesizing valid inputs [BGS18;
VRC06], and inputs that induce failures in control systems [Zha+21]
Reward-Free Exploration in Reinforcement Learning.

This line of work provides theoretically efficient algorithms to explore a given environment
in absence of a reward function [Jin+20; ZMS20]. They provide theoretical guarantees over
the coverage of the state space, also using decaying reward augmentation. Unfortunately,
the number of episodes required for coverage are (5th degree) polynomial functions in the
size of the states and actions and thus unsuitable in our setting. When run for a limited
amount of time, they do not perform well in practice compared to our algorithms and our
baselines.
Splitting Goals into Sub-goals.

Hierarchical RL relies on splitting an RL problem into subtasks, learn policies to solve each
subtask, and then combine these policies to solve the original problem [SPS99; Die00; PR97].
These methods build on the idea of defining higher level actions, with multiple steps dura-
tion, to solve the subtasks. They then learn some sort of global policy that chooses which of
these actions to follow at each step. While we also leverage the idea of splitting the problem
into smaller tasks, our subtasks are just waypoints towards the goal with fixed priorities.
Our approach is simpler and does not allow to reuse or combine these sub-policies in a
structured way.
Reward Machines

Another way to leverage tasks decomposition and knowledge of the reward function struc-
ture is given with Reward Machines [Ica+22]. They allow for complex reward structure
specification, hierarchical learning approach, and efficient algorithms to speed up policy
optimization. Unfortunately, we can’t benefit from these advantages in our setting. The
efficient algorithms mainly build on the idea of decoupling the reward function from the
environment transitions, allowing to simulate the result of an observed transition as if it
happened at a different stage of the reward function. In our setting, the rewards strictly
depend on the system transitions and hence we can’t decouple them.
Temporal Goals in RL

Recent work in combining temporal logic goals and reinforcement learning has also ex-
plored the idea of intermediate goals [Jot+21; Jia+21; Alu+22; XT19]. For example, given a
goal described by an automaton, a sub-goal is to reach intermediate states of the automa-
ton between the initial and accepting states. Similar to the problem with reward machines,
simulating transitions based on the sub-goals is infeasible when testing real world imple-
mentations with minimal instrumentation.
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Chapter 5

ModelFuzz: model coverage guided

fuzzing

In the previous two chapters we saw the benefit of allowing a developer to bias exploration
and guide the state space search in order to find bugs more effectively. At the same time, ef-
fective biased search allows the developer to gain confidence in the correctness of specific
parts of the codebase. We motivate the predicates required for biased exploration using
the formal models of the protocols. However, the algorithms do not rely on the models
for exploration. In this chapter we introduce a novel fuzzing technique ModelFuzz that
addresses the challenge of connecting the model to the implementation in real time. Mod-
elFuzz is a fully automatic testing mechanism that leverages the substantial effort put into
the formal modelling of distributed protocols [Lam02; Des+13; Del+15b; Del+21; Bor+21;
New+15].
We show that coverage over the formal model states serves as an effective proxy to find-
ing bugs in the implementation. Specifically, our novelty lies in guiding fuzzing on the
implementation using the coverage information of formal model. The reason for the ef-
fectiveness of the approach is due to the abstract nature of the formal model. The model
only captures the interesting behaviors of the implementation and therefore coverage over
the model translates to coverage of interesting states of the implementation. Unlike with
fuzzing sequential programs, our use of the formal model for fuzzing is a departure from
existing testing techniques. Existing notions of coverage fall on the ends of the abstraction
spectrum - too fine grained or too coarse grained. Using line or branch coverage is too
coarse grained since they ignore different message interleaving information and is insuf-
ficient to explore interesting states of distributed programs. Trace coverage, on the other
hand, is too fine grained and explore different specific message interleaving which might
not lead to new states.
By relying on the model, we can tune the coverage to the right abstraction and achieve
better results. Our approach, ModelFuzz, shares common insights with semantic fuzzing
approaches [Pad+19] and grammar-based fuzzing approaches [Le+19; GMZ20]. Seman-
tic fuzzing aims to cover interesting program executions processing program inputs rather
than spending exploration budget for exercising uninteresting, syntactic input parsing logic.
While a naive fuzzer is likely to generate inputs that cannot pass the input validation and
parsing stage, semantic fuzzing generates test inputs that can go deep into the execution.

71



Similarly, a naive event scheduler for distributed systems is likely to produce tests that
spend execution budget in exercising uninteresting, network setup stages. For example, it
can explore many different orderings of vote messages during the cluster’s leader election
phase, barely electing a leader after a prolonged execution. Our approach aims to direct
testing toward interesting system behaviors, e.g., processing of user requests once a leader
is elected. Similar to grammar-based fuzzing that uses formal specification of the test input
to guide test generation, we use an abstract formal model of distributed systems to guide
the generation of semantically interesting temporal event schedules.
We implement ModelFuzz to test distributed systems implementations using their corre-
sponding TLA+ models [Lam02]. At the same time, we rely on the conventional fuzzing
loop in the implementation. Starting from a random corpus of inputs, ModelFuzz samples
an input to run on the implementation in each iteration. The resulting execution is sim-
ulated on the model to obtain coverage information. If we observe new states, similar to
other fuzzing approaches, wemutate the input and add it to the corpus of inputs to sample
from. Apart from the algorithm, the technical contribution of ModelFuzz lies in (1) defin-
ing the input for distributed systems and (2) simulating the execution on the TLA+ model.
To enable (2), we augment the TLC model checker with a server that accepts a trace in a
generic format to simulate.
To demonstrate the effectiveness of ModelFuzz, we test 2 Raft implementations Etcd and
RedisRaft along with a motivating micro-benchmark. We find 13 new bugs in RedisRaft
and 1 new bug in etcd. Furthermore, 4 of 13 bugs were detected only by ModelFuzz. In
comparison, WaypointRL was able to uncover 7 of the 13 bugs with the RedisRaft, and
reproduce the 1 new bug in Etcd. The two approaches are complementary and help uncover
different set of bugs.
In what follows, we provide background on fuzzing (Section 5.1), followed by a descrip-
tion of fuzzing for distributed systems along with the ModelFuzz algorithm (Section 5.2).
Then, we describe the implementation details (Section 5.3) before presenting the results
of our evaluation (Section 5.4). Finally, we discuss similar existing work and compare the
conceptual differences to ModelFuzz (Section 5.5).

5.1 Background

The standard fuzzer loop (e.g. AFL [Zal]) consists of the following components, (1) the
system under test, (2) input generation and (3) the coverage information. Starting from a
random corpus of inputs, the fuzzer will test the system with those inputs while collecting
coverage information. When a new coverage state is observed, the corresponding input
is mutated to generate new inputs. In effect, the fuzzing will search the random space of
inputs using the guidance from the coverage. In this section, we will first describe a generic
fuzzing algorithm, the components along with a motivating example.
Algorithm 5 describes the generic fuzzer loop. Apart from the three components, the al-
gorithm accepts the test budget K as a parameter. For standard programs, the input are a
sequence of bits and mutations involve flipping bits. Coverage is measured based on the
structure of the program - number of lines of code executed or number of branches in the
code coverage. Optimizations to the algorithm include - mutating the trace more than once
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Algorithm 5: Generic fuzzer algorithm
Input: System under test S
Input: Coverage guidance G
Input: Input generator I
Input: Test budget K

inputPool← ()
for episode k = 1, · · · , K do

if |inputPool| = 0 then

inputPool← I.reseed()
input← inputPool.pop()
trace← S.run(input)
if G.haveNewState(trace) then

inputPool.push(I.mutate(input))
G.record(trace)

given by a parameter mutationsPerTrace, reseed at a fixed frequency and reseeding the
input when the coverage saturates. In ModelFuzz, we adopt two of the optimizations -
mutating more than once and reseeding at a fixed frequency.
The system S in Algorithm 5 is characterized by the function run. Similarly, coverage
guidance G by haveNewState and record, and, input generator I by reseed and mutate
functions. When describing ModelFuzz for distributed systems. We will concretely define
these functions.

Motivating example

Consider a parallel processing environment - Amaster process sends work toworkers in
the form of execute messages. The master also sends commands to a terminator which
clears the work at a worker by sending flush messages. All three process type - master,
worker and terminator - communicate by sending messages and therefore contain inbound
messages queues. The correct working of the environment is shown in Figure 5.1a The
worker stores messages in a buffer and processes them sequentially. The buffer is cleared
when a flush message arrives.
A correct worker will check the buffer before executing a request. A buggy worker will
crash if this check is not performed. Figure 5.1b illustrates the buggy execution where the
terminator schedules a flush before the worker executes a request. Due to the flush, the
buffer is now empty and any attempt by the worker to execute will crash it.
To test an implementation of this system, we first need to capture the messages. Delivering
messages based on the input will produce deterministic executions necessary for testing. A
naive notion of inputs to the system would be the sequence of messages that are processed
throughout the execution. However, since the messages are a consequence of the process
executing, an arbitrarily generated input will not necessarily be a valid input. For exam-
ple, we cannot have an execute message in the execution without first observing a request.
Therefore, we fix the input as the sequence of processes scheduled in an execution. For ex-
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Figure 5.1: A parallel processing system with a master, worker and terminator that process
work in parallel while communicating over the network

ample, master, worker1, worker2, terminator, master, worker1 is an input where we schedule
the corresponding process and deliver messages if any in the inbox of that process. Note
that the result of executing an input is a trace - defined by the sequence of messages along
with the states. A mutation on the input would be to swap two processes or insert a new
process in between two.

Now let us consider the different notions of coverage. Existing notions are either too coarse
grained or too fine grained. Line and branch coverage is too coarse grained.Intuitively,
a single input will explore all lines of the implementation - initializing, executing work
and flushing. However, we still leave large set of traces uncovered. The same is true for
notions of branch coverage. Trace coverage (based on the notion of Mazurkiewicz traces),
on the other hand, is too fine grained. For example, although the messages Register(w) and
Register(t) are dependent, their relative ordering does not affect the system state. However,
the ordering of Request(r) affects the reached system state; the system handles the request
only if it is delivered after the two registration messages. The given system has 10 possible
message orderings with 8 Mazurkiewicz traces (capturing the commutativity of the Execute
and Terminate messages). However, the set of all possible system states can be covered
by running fewer executions, e.g., only 2 executions for this example. Therefore, guiding
testing using unique traces as a coverage notion results in exploring redundant behaviors.

Our notion of coverage defined by the different states of the TLA model (state-based) that
captures the system is better suited to guide the testing of such distributed systems. Guiding
testing using new behaviors in the model results in an efficient exploration of the differ-
ent possible executions on the system that are truly unique. To compare with trace based
coverage notion consider the following traces that are explored.

E1 Request(r), Register(w), Register(t)
E2 Register(w), Request(r), Register(t)
E3 Request(r), Register(t), Register(w)
E4 Register(t), Request(r), Register(w)
E5 Register(w), Register(t), Request(r), Execute(r), Terminate(w), Flush
E6 Register(t), Register(w), Request(r), Terminate(w), Execute(r), Flush
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Trace-based coverage would label all these executions as interesting since each belongs to a
different coverage class (i.e., they deliver Request(r), Register(w), and Register
(t) to the same process in a different order). Generating new tests around all these execu-
tions leads to a high number of redundant executions since many of them already produce
the same system behavior. In contrast, state-based coverage identifies the coverage of new
states in the executions of E5 and E6, which hit some new system states that are not ob-
served in E1-E4. Therefore, state-based coverage-guided testing generates new test cases
only around these executions.

5.2 Fuzzing distributed system with models

We will now describe the formal model of a distributed system, an input to the system,
our coverage guidance measure and mutations to the input thereby describing the core
components of the ModelFuzz algorithm.

5.2.1 Distributed system model and inputs

In a nutshell, a distributed system S consists of a set of processes that concurrently operate
on their own local states and communicate with each other by exchanging asynchronous
messages (M). Each process contains a FIFO queue of incoming messages. By process-
ing a message from the queue, the process may update its local state and/or send new
messages to the processes. We consider FIFO message queues that preserve the order of
messages between the same sender-receiver pairs, as in other works such as P [Des+13],
Coyote [Del+21] or Akka [Lig11]. Note that this is a deviation from our previous models
considered in this thesis. To enable fuzzing we need to randomly generate inputs that are
executable by definition. The FIFO queue model allows us to generate high-level inputs
that specifies the schedule of processes and avoids reasoning about the order of specific
messages. Any input that reasons about the order of specific messages is not always exe-
cutable. Certain messages sent by the processes are conditioned on the order and contents
of prior messages.
Running an input on the distributed system is equivalent to implementing a monitor from
Section 3.2. In this case, the monitor enforces the specific input which involves maintaining
a mail box, sending messages, crashing, and starting processes.
Given a set of processes P and a size of the input n, we define a fuzzer input as follows,

Definition 7. A fuzzer input I = (⟨p0, a0⟩, ⟨p1, a1⟩, · · · , ⟨pn, an⟩) where pi ∈ P and
ai ∈ {message, start, stop}. In words, the input is a sequence of processes to schedule along
with an action at each step. The actions are one of,

• message - deliver messages to the process from its inbox
• start - start the process (requires it to be currently stopped)
• stop - crash the process

Valid inputs are those where the start actions are well defined i.e., the process that needs
to be started has been stopped before. In practice, we add an optimization to the input
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- in step i with action ai = message, instead of delivering a single message from the
inbox, we parameterize it to at most ti messages. This is equivalent to having ti actions of
message for the same process in the input. The motivation for the optimization is to deliver
more messages to observe meaningful state changes in the system. Delivering only a single
message at each action is too fine grained a step in the model.

Algorithm 6: Running an input I on distributed system S

def updateBuffers(bs, es):
for e ∈ es do

if e.type = send then

bs(e.p).append(e.val)
return bs

def S.run(input):
∀p ∈ P , bs(p) = ()
active← P
eventTrace← ()
for ⟨pi, ai⟩ ∈ input do

if ai = message(ti) then
es← pi.deliver(bs(pi), ti)

// deliver at most ti messages from the buffer
eventTrace.append(es)
bs← updateBuffers(bs, es)

// update the buffers based on the resulting events
if ai = stop ∧ pi ∈ active then

pi.stop()
active← active \ {pi}
eventTrace.append((pi, stop, ϕ))

if ai = start ∧ pi /∈ active then

pi.start()
active← active ∪ {pi}
eventTrace.append((pi, start, ϕ))

return eventTrace

The result of executing an input on the system is an event trace. To understand the event
trace, let us define the semantics of executing the input. The state of the system consists
of two components (1) the FIFO input queues of each process (2) the set of active process.
More formally, the state s is the tuple (bs, active) where bs : P → [M] and active ⊆ P .
Algorithm 6 outlines the execution of an input on the system. The result is eventTrace
that captures the execution on the system. Here, an event e ∈ E is the tuple (p, type, val)
where p ∈ P , type ∈ {send, receive, internal} and val ∈ VE .

5.2.2 Coverage guidance

The guidance mechanism connects the obtained traces to the model. We will refer to our
coverage mechanism asmodel-coverage. Specifically, the guidance mechanism simulates
the trace on the model, stores and tracks all the states observed and, identifies when a trace
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leads to a new state in the model. In our experiments, we are concerned with the TLA+
models of the implementation and to simulate traces, we modify the TLC model checker.
However, the process is not fully automatic and requires as input a mapper that maps the
events in the trace to actions in the model. We will later elaborate on the specific mapping
we use for the Raft protocol.

Algorithm 7: Guidance algorithm G

Input: Event Mapper Φ
Input: Model M

G.states = {}
def G.haveNewState(eventTrace):

modelActions← Φ(eventTrace)
modelStates←M.run(modelActions)
if modelStates \G.states ̸= ϕ then

return true
return false

def G.record(eventTrace):
modelActions← Φ(eventTrace)
modelStates←M.run(modelActions)
G.states← G.states ∪modelStates

Formally, the model is a transition system M = ⟨Q, I, A, δ⟩ where Q is a set of states, I is
the set of initial states, A is the set of actions, and δ ⊆ Q × A × Q is a set of transitions.
An action a ∈ A is enabled at state q ∈ Q iff (q, a, q′) ∈ δ for some q′ ∈ Q. A run of M is
a sequence ρ = q0

a1−→ q1 . . .
am−→ qm where q0 ∈ I and (qi, ai, qi+1) ∈ δ holds for all i. The

mapper Φ : [E ] → [A] is a function that maps the given sequence of events to a sequence
of actions. Note the actions on the model differ from the actions on the input. Algorithm 7
defines the methods of the model-coverage guidance mechanism and accepts as input the
formal model M and the mapper Φ

Trace-coverage is an alternative notion of coverage that we compare against in our evalua-
tion. Trace coverage tracks the set of unique traces covered otherwise known asMazurkiewicz
traces [Maz86]. The set of all possible traces is partitioned into equivalence classes where
traces in the same class differ only in the ordering of unrelated events. here, we refer to the
traditional happens-before ordering of events [Lam78]. However, as with the motivating
example, trace coverage explores redundant states since it is too fine grained. It is possible
that two distinct Mazurkiewicz traces results in the same state trace in the model. There-
fore, we observe guidance using trace coverage does not lead to high coverage of model
states.

Line-coverage, on the other hand, is too coarse grained. A few execution traces reaches
high coverage of lines executed, beyond which fuzzing proceeds very similar to random
exploration. Therefore, guidance using line coverage does not lead to high coverage over
the model state. In contrast, we observe that guidance using model-coverage does not
degrade the line coverage of the implementation.
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Figure 5.2: The workflow of ModelFuzz

5.2.3 Mutation strategies

When a coverage guidance mechanism designates an input as interesting - leads to a new
states, the input is mutated to generate new traces. The key to capitalizing on the coverage
guidance is to define meaningful mutations. Here, we elaborate on our mutation strategies.
To recall, an input I is the sequence (⟨p0, a0⟩, ⟨p1, a1⟩, · · · , ⟨pn, an⟩) where the actions are
one of message(ti), start or stop. We define a combination of 3 mutations to apply on the
input as follows,

• SwapProcesses randomly selects two schedule indices i, j in I , and swaps the pro-
cesses pi and pj .

• SwapCrashProcesses randomly selects two schedule indices i, j where the actions
are stop, and swaps the positions of the processes pi and pj (for schedules with a
single crashing process, it changes the process and, for schedules without a stop,
nothing is changed),

• SwapMaxMessages, which randomly selects two schedule indices i, j with actions
message(ti) and message(tj) respectively and swaps ti and tj , i.e., the number of
messages to deliver at these positions.

5.2.4 The ModelFuzz algorithm

Together, the three components - distributed system, coverage guidance and the input gen-
erator describe the ModelFuzz testing algorithm. We illustrate in Figure 5.2, the mecha-
nism bywhichModelFuzz combines the different components. Starting from a set of initial
inputs T0, ModelFuzz runs each input on the system S, collects the coverage information
using the coverage guidance and mutates interesting states to replenish the input corpus.
The coverage guidance internally uses the mapper Φ to simulate the trace on the abstract
model M . This is denoted as the “Event Mapper” in Figure 5.2.

Note a few caveats. In the figure, we refer to the inputs as test cases in line with the standard
terminology used in fuzzing literature. As mentioned earlier, ModelFuzz incorporates two
optimizations - (1) mutations are performed more than once when the input leads to an
interesting trace and (2) ModelFuzz reseeds the input corpus (test cases) periodically.
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5.3 Implementing ModelFuzz

As shown in Figure 5.2, we need to implement a controlled scheduler to enforce executions
on the system, coverage analyzer that includes a mapper to measure coverage and a con-
trolled model checker to simulate the trace on the model. In this section, we outline the
technical challenges we overcome to implement ModelFuzz. Subsequently, we will use
Raft as an example to describe a concrete event mapper. Also shown in the Figure 5.2 are
the two sections of the implementation. First, the main fuzzer loop that drives the testing
and second, the controlled model checker.

5.3.1 Controlled scheduler

The controlled scheduler is responsible for executing an input I on the distributed system S
and obtain the resulting event trace. To that end, the controlled scheduler requires control
of all in-flight messages to enforce delivery order and control of the processes to start and
stop when needed. In our evaluation, we instrument implementations and write specific
process control mechanisms to enable the two actions.

The event trace is obtained also by instrumenting the implementation. At each step of the
input, when messages are delivered, processes are started or stopped, we record events.
Additionally, we also record internal events that are necessary for the mapper.

The controlled scheduler is an implementation of the monitor we define in Section 3.2.
As with WaypointRL, the monitor here is not driven by the events. Instead, the monitor
has an explicit input trace to reproduce with clear scheduling boundaries. The actions of
the input correspond to the actions of the RL agent and therefore, we reuse the extended
implementation of the monitor from WaypointRL.

5.3.2 Event mapper

The event mapper translates the sequence of concrete events executed on the system by
the controlled scheduler into a sequence of actions in the abstract model. However, the
information contained in the events recorded by the controlled scheduler is specific to the
implementation under test and cannot be mapped directly onto actions on the abstract
model. Furthermore, different implementations of the same protocol (that share a model)
may encode the parameters differently. Therefore, the event mapping has to be specific to
the implementation under test.

The translation should ensure that the resulting abstract state captures the concrete imple-
mentation state at each step. This means that the translation may ignore some unnecessary
events in the implementation. Indeed, in our event mapper for Raft, we observe the need
to ignore certain events. For example, the model does not capture Heartbeat messages
exchanged between processes, which are regularly sent to monitor whether the processes
are alive. Hence, when performing the translation, we do not map the message send and
receive events of Heartbeat messages to any actions on the abstract model.
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5.3.3 Controlled model checker

The resulting actions from the event mapper are used by the controlled model checker to
enforce the execution on the model. Unlike a standard model checker, which explores the
whole state space of the abstract model, ModelFuzz requires exploring only the specific
execution defined by the sequence of actions and returning the visited set of model states.
For this, we implement a simulation engine that (i) controls the next action to take at each
current state of the model execution and (ii) records the visited states to provide them as
feedback to the fuzzer.
Our implementation uses TLA+ [Lam02] models of the distributed systems, and we imple-
ment the controlled model checker for the TLC explicit state model checker [YML99] in the
TLA+ Toolbox [KLR19].

5.3.4 Testing Raft protocol implementations

In our evaluation, we test implementations of the Raft protocol. Here we elaborate on the
specific implementation details related to the Raft protocol, including the specific event
mapping.

Abstract model

We use the TLA+ model of the Raft protocol made available by the protocol’s authors1 and
extend it by modeling (i) crash and restart of the processes and (ii) snapshot operations.
Besides the abstract variables for the internal states of each process (e.g., the term number,
its log of requests), the extended model uses an additional variable to keep the set of active
processes in a cluster and introduces crash and restart actions. The crash and restart actions
are enabled for the active and crashed processes, respectively, and they update the set of
active processes in the cluster.
Based on empirical evidence that implementation bugs can occur in the snapshot process-
ing logic, we also extend the model to capture snapshot operations so that the model can
guide testing toward executions where processes trigger snapshots and restore them upon
recovery. Specifically, we introduce a snapshot index for each process and actions to update
the processes’ snapshot indices.
To ensure that the extended TLA+ model satisfies the original correctness specifications,
we run the model-checker on the extended model. The extended model is available open
source 2.

Abstractions of the model states

While the abstraction provided by the TLA+ model is useful in guiding the fuzzer, we ob-
serve the need for further abstracting the set of observed states to guide the exploration to
‘interesting’ parts of the state space.

1https://github.com/ongardie/raft.tla
2https://github.com/burcuku/tlc-controlled-with-benchmarks/blob/main/tla-

benchmarks/Raft/model/raft_enhanced.tla
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Concretely, the states of the existing TLA+model are defined by the local states (e.g., opera-
tion logs) of each process, along with the current term numbers of each process. Therefore,
the model states differentiate between the system states with the same set of local process
states if they are reached in different term numbers. Consider the leader election phase
of an execution. Although the local states of the processes do not change, unsuccessful
leader election rounds result in hitting new system states since the processes increment
their term numbers. Such state information guides the fuzzer toward exploring executions
with growing term numbers without covering interesting system behavior.
To guide the fuzzer with more precise state information, we abstract the term numbers
in the model state within the TLC model checker. Specifically, we merge two consecutive
states in an execution that only differ in the term numbers of the non-leader processes. Note
that we do not modify the TLA+ model of the system; we implement the state abstraction
within the TLC model checker and communicate the abstracted states to the fuzzer.

Event mapper

We implemented event mappers for two different implementations of the Raft protocol (in
etcd and Redis) to the abstract TLA+ model. The event mappers map the events to the
abstract actions in two steps.
The first step converts the implementation-specific encoding of messages to a standard
JSON encoding before passing it to the controlled model checker. The standardization helps
with mapping different message encodings for different implementations of the protocol.
Note that the encoding of the messages to JSON format resides with the instrumentation
of the specific implementation under test.
In the second step, we map the standardized events in JSON format to abstract actions
on the model. The second step is embedded in the controlled TLC model checker. Our
implementation of the controlled TLC model checker parses the TLA+ model and exposes
a remote procedure call (RPC) interface to run simulated executions. The interface accepts
a sequence of standardized events and outputs the sequence of abstract states observed in
the model.
Our mapper for Raft maps system events into three classes of model actions:

1. The cluster actions related to the set of active and participating processes: AddProcess,
Crash, Restart, all with a process ID as an argument. The action AddProcess is mapped
when a process is added into the cluster, Crash corresponds to the system events
crashing a process, and Restart corresponds to system events restarting a process.

2. The protocol actions of a process - Timeout, ElectLeader and UpdateSnapshotIndex.
Identifiedwith a process id as an argument in addition to other arguments. (i) Timeout
action is mapped to when a process initiates a term change, (ii) ElectLeader is mapped
to when a process is designated to be the leader, and (iii) UpdateSnapshotIndex is
mapped to when a process creates a snapshot.

3. The protocol actions for processing the protocol message, with the arguments corre-
sponding to the contents of the message. ClientRequest is mapped to when a process
receives a request. HandleRequestVoteRequest mapped to sending a request vote re-
quest message and the correspoding HandleRequestVoteResponse mapped to request
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vote response message. Similarly, HandleAppendEntriesRequest is mapped to append
entries requestmessage and a special eventHandleNilAppendEntriesRequest ismapped
to append entries request message with no entries. Finally, HandleAppendEntriesRe-
sponse is mapped to append entries response messages.

5.4 Evaluation

We implement ModelFuzz to test two implementations of the Raft protocol [OO14]: Etcd-
raft3 and RedisRaft4 alongwith an implementation of a parametrized version of the example
system presented in Section 5.1 in the Coyote framework [Del+21].
Our implementation uses the TLA+ model of the Raft protocol to measure abstract state
coverage. We use the TLA+modelmade available by the protocol’s authors [Git] and extend
it5 to model (i) crash and restart of the processes and (ii) snapshot operations.
We evaluate ModelFuzz compared to pure (unguided) random testing as well as struc-
tural code coverage-guided and trace coverage-guided fuzzing strategies. Specifically, we
evaluate the performance of ModelFuzz in terms of test coverage and bug finding ability
answering the following research questions:

RQ1 How does the test coverage of ModelFuzz compare to other strategies?
RQ2 Is ModelFuzz more effective at detecting bugs than the other strategies?

We address RQ1 by comparing the abstract state coverage of ModelFuzz to pure ran-
dom, line coverage-guided, and trace coverage-guided fuzzing strategies. We address RQ2
by evaluating the bug-finding effectiveness of different testing strategies using two mea-
sures [BSM22] (1) the unique number of bugs found and (2) the number of test executions
to find a bug.
Statistical evaluation [AB14]. We analyze the statistical significance of our coverage results
by running the Mann-Whitney U-test [MW47]. We assess ModelFuzz’s bug-finding ability
compared to the other testing strategies using Vargha and Delaney’s Â12 statistic [VD00],
with Â12 = 0.6 as in previous literature [Men+23b].
Test configuration. We run the fuzzers with an initial set of |T0| = 20 random test cases.
For each test case that covers a new state, we create five new test cases by mutating the
original test case. We multiply the number of generated test cases proportionally with the
number of new states observed in the test execution. We periodically repopulate the set of
test cases.
Test oracle. We check the correctness of test executions by checking for assertion violations,
exceptions, and crashes. We also check the serializability of the operations in etcd and Redis,
running Elle [AK20] on the executed operation history.
Experimental setup. We run the experiments on an Intel(R) Xeon(R) CPU E5-2667 v2 ma-
chine with 32 cores and with 252GB of RAM.

3https://github.com/etcd-io/raft
4https://github.com/RedisLabs/redisraft
5https://anonymous.4open.science/r/tlc-controlled-with-benchmarks-8E36/tla-

benchmarks/Raft/model/raft_enhanced.tla
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Figure 5.3: Testing the microbenchmark. (a) Test coverage for m = 6 workers and n = 40
tasks (b) #tests to find the bug for varying #tasks with m = 6 workers.

m = 5 m = 6 m = 7
n 10 20 30 40 10 20 30 40 10 20 30 40

Random 0.81 1.00 1.00 1.00 0.86 1.00 1.00 1.00 0.71 1.00 1.00 1.00

Trace 0.33 1.55 0.80 0.83 0.32 0.43 0.73 0.75 0.14 0.14 0.37 0.60

Table 5.1: Pairwise Â12 statistic results against ModelFuzz for the microbenchmark with
varying m and n.

5.4.1 Micro benchmark in Coyote

We implemented a parametrized version of the example in Section 5.1 in the Coyote frame-
work [Del+21]. The implementation parametrizes the system in (i) the number of worker
processes and (ii) the number of Execute task messages that need to be processed to
handle a request. For (i), we generate m workers that need to register to the AppMaster
before AppMaster can process a client request. For (ii), we modify the processing of
Execute so that the Worker divides the work into a chain of n number of tasks.

The system’s possible executions involve different interleavings of the Terminate mes-
sage with the chain of Executemessages sent to the Worker. We seeded a concurrency
bug that occurs if Terminate is processed by theWorker just before the lastExecute
message while processing a client request. The bug gets harder to trigger with increasingm
and n since it requires allmworkers to register toAppMaster beforeRequest and also
to deliver the chain of Executemessages except for the last one before Terminate. 6

We ran the microbenchmark with 10K iterations with varying m = {5, 6, 7} workers and
n = {10, 20, 30, 40} tasks over ten runs for each configuration. For this system, we do not
compare with line-based coverage as the existing coverage tools do not integrate with the
framework we are using.

6Available at https://anonymous.4open.science/r/coyote-modelfuzz-5757
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Coverage. Figure 5.3a shows the coverage of the abstract states of the microbenchmark
with m = 6 workers and n = 40 tasks, which is representative of different parameter con-
figurations. Since the microbenchmark is a small example with a small state space, the dif-
ference in the explored number of unique abstract states among different testing approaches
is not large. However, the results show ModelFuzz’s ability to cover more abstract states
compared to random testing and trace coverage guidance. OurMann-Whitney U-tests show
that ModelFuzz achieves statistically significantly better coverage results at α = 0.05,
compared to random testing and trace-guided fuzzing with p-values {0.0001, 0.0004}.

Bug finding. We observe a trend with ModelFuzz where it consistently detects the in-
jected bug faster than pure random and trace coverage guided testing approaches with
increasing m and n.
Figure 5.3b plots the number of test iterations to trigger a bug for increasing n number of
taskmessages with a fixedm = 6 processes. The results show that the increasing number of
task messages makes the bug more difficult to detect as it is triggered deep in the execution
space. This effect is most evidently seen with pure random testing, as it fails to detect the
bug after n = 10. Trace coverage guided testing achieves a more consistent variance among
different campaigns. However, we observe a trend in its median value for the first iteration
to detect the bug, where it declines as the bug gets harder to detect with increasing n. The
performance degradation is not as significant for ModelFuzz, as its median value does not
change drastically among the experiments.
We use Vargha and Delaney’s Â12 statistic to analyze the significance of our bug-finding re-
sults on all of the parameter configurations. Table 5.1 lists the pair-wise Â12 statistic values
against ModelFuzz for testing the microbenchmark with varying m number of workers
and n number of tasks. The results show the statistical significance of 17 out of 24 config-
urations (highlighted in bold), which indicates that ModelFuzz is more effective than the
other testing approaches at finding the bug.

5.4.2 Etcd-raft

Etcd-raft7 powers the popular distributed key-value store etcd8. It is awell-tested, production-
ready implementation of Raft used by companies such as Cloudflare. The implementation
is 7k lines of go code. We instrument its source code with an additional 1k LOC9 to im-
plement the fuzzer loop, gain control of the messages exchanged between processes, and
implement necessary adapters to communicate with the controlled TLC model checker.
We tested the executions of Etcd-raft with three processes and with five client requests. We
ran our tests with a crash quota of 10 and delivered a maximum of 5 messages at each step.
We report the results over an average of 20 runs, each with 100k test iterations.

Coverage. Figure 5.4a reports the test coverage of the test harnesses in the number of
abstract states observed with different strategies. The results show that model-guided

7https://github.com/etcd-io/raft
8https://etcd.io
9https://anonymous.4open.science/r/etcd-fuzzing-29D8/README.md
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Figure 5.4: Testing etcd. (a) Test coverage of abstract states (b) Average number of test
iterations to find the synthetic bug. The new bug is only detected by ModelFuzz.

Bug Random Trace Line
Seeded 0.57 0.53 0.47

Table 5.2: Pairwise Â12 statistics against ModelFuzz for etcd.

test generation of ModelFuzz outperforms unguided random testing (Random), coverage-
guided fuzzing using line coverage (Line), and coverage-guided fuzzing using trace cover-
age (Trace) in the explored number of unique system states. ModelFuzz covers 1.22x more
states than Random, 1.23x more states than Line, and 1.48x more states than Trace cover-
age approaches. Comparing model-guided fuzzing and structural guidance, we find that
in both cases, the code coverage saturates at 47.9%. Similarly, comparing model-guided
fuzzing and trace-based fuzzing, we find that in both cases, we explore 10k unique traces.
To mitigate the randomness, we perform a statistical U test (Mann-Whitney U Test) and
conclude that ModelFuzz’s coverage of model states is significantly higher than all other
approaches. The null hypothesis we consider is that ModelFuzz’s final coverage is greater
than other guidance measures. We obtain p values of 1.53e−10, which is less than the
acceptable measure of 0.05.

Bug finding. Etcd-raft has been the subject of many extensive testing approaches. How-
ever, we find one new bug in addition to reproducing a seeded bug. The seeded bugmodifies
the condition for checking if a process has a quorum of votes. Specifically, we change the
valid quorum size from n/2 + 1 to n/3 + 1. The new bug we found is more subtle and leads
to a process crash when accessing a missing snapshot. We reported the bug10 to developers.
To answer RQ2, we analyze the number of detected bugs and the number of test iterations
to discover a bug using different strategies. While the seeded bug can be found in each of
the 20 trials by all of the strategies, the new bug can only be found using ModelFuzz.

10https://github.com/etcd-io/raft/issues/108
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Figure 5.4b reports the average number of iterations to discover the seeded bug using dif-
ferent strategies. The bug can be found by random search faster on average. This can be
explained by the characteristics of the bug, which is easily triggered in executions with quo-
rums of only n/3+1 processes. Table 5.2 compares the distributions of the first occurrence
of the seeded bug in each trial against ModelFuzz for the different guidance approaches.
The Vargha-Delaney (Â12) statistical significance test shows that no approach is signifi-
cantly better for the seeded bug.
Overall, the results show that ModelFuzz is more effective at detecting bugs, as only Mod-
elFuzz detects the new bug, and all approaches show comparable performance for the
seeded bug.

5.4.3 RedisRaft

RedisRaft11 powers the popular high-performance Redis distributed key-value store. Redis-
Raft compiles into a module that can be loaded onto the main Redis server. The module
enables different Redis servers to behave as a group and commit client requests in the same
order. The module internally uses a minimal Raft library written in C. Overall, the module
consists of 30k lines of C. Our instrumentation of the module requires an additional 1.5k
lines of C12 and Go13 code, where the Go code implements the fuzzer loop.
We tested RedisRaft running the fuzzer with three processes and five client requests. Similar
to Etcd-Raft, we ran the test executions with a crash quota of 10 and delivered a maximum
of five messages at each step. For each test run, we execute 20K test iterations and report
the average results of 20 test runs.

Coverage. Figure 5.5a illustrates the average coveragemeasures for 20K test iterations for
each testing strategy. Similar to Etcd, we show that ModelFuzz can obtain better coverage
over model states compared to random testing, line coverage guided, and trace coverage-
guided fuzzing strategies. On average, ModelFuzz observes 2.58x more states than random
exploration, 2.43x more than line coverage, and 2.84x more coverage than trace-guided
fuzzing. As with Etcd-Raft, we answer RQ1 with an observation that model guidance
outperforms random exploration and other coverage-guidance strategies in the coverage
of explored system states.
Similar to Etcd, we perform the Mann-Whitney U test over the final coverage numbers to
mitigate the effect of randomness. We obtain p values of 1.23e−4 vs random, 8.04e−5 vs
trace and 5.26e−4 vs line. The U tests conclude that ModelFuzz covers significantly more
states than the other testing strategies.
We also analyze the branch coverage of the tests and observe that guiding the test execu-
tions using model coverage does not degrade the coverage over traditional code coverage
metrics. Table 5.5b reports the mean and standard deviation branch coverage of the dif-
ferent guidance methods. We measure branch coverage of the source code in C using the

11https://github.com/RedisLabs/redisraft
12https://anonymous.4open.science/r/instrumented-redisraft-1485/README.md
13https://anonymous.4open.science/r/redisraft-fuzzing-E49B/README.md
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Figure 5.5: Testing RedisRaft. (a) Test coverage of abstract states (b) Average branch cover-
age of 20 runs.

gcov tool. However, we observe high variance in the data, which we attribute to the cov-
erage measurement tool. As we run multiple copies of the source code during each test
iteration, the branch coverage is combined for each copy. However, we found that the gcov
tool does not always merge the coverage values of concurrent invocations correctly. Fail-
ing to merge coverage information results in the high variance we observe with the branch
coverage measures presented in the table.

Bug finding. Our experiments for testing RedisRaft discovered 14 different bugs, two of
which are known bugs reported in RedisRaft’s issue tracker, and the remaining 12 are new,
previously unknown bugs. The bugs occur in the existence of process crashes and restarts
with certain orderings of events, and they manifest as thrown exceptions or assertion vio-
lations. We investigated the bugs and reported them in the issue tracker of the RedisRaft
open-source repository.14 Table 5.3 briefly describes the new bugs we discovered.
Among all 14 bugs, ModelFuzz found more bugs than other guidance approaches. Specifi-
cally, ModelFuzz found 13 bugs, while random exploration, trace-guided, and line-guided
found only 10 of them. Furthermore, ModelFuzz is faster in reproducing seven of the bugs
compared to other approaches, where Random exploration and Line-guided each find three,
and trace-guided finds one bug faster. For each bug and guidance method, the table in Fig-
ure 5.4 lists the number of runs that find the bug (in parenthesis), and the average first
occurrence of the bug in the successful runs. For each bug, we highlight the lowest average
first occurrence in bold. Among the bugs, three of them are found only using ModelFuzz.
We classify a bug as rare if it was found in at most five trials. ModelFuzz finds four of the
rare bugs faster than the other approaches.
For each of the 14 bugs, we calculate Vargha and Delaney’s Â12 statistics to analyze the
pair-wise statistical significance of the results. Table 5.5 reports the Â12 statistics against
ModelFuzz for each bug, highlighting the results with statistical significance in bold. The
analysis shows that ModelFuzz detects the bugs {6, 12, 13, 14} statistically significantly

14https://github.com/RedisLabs/redisraft/issues (Issue numbers: #643-#649)
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Table 5.3: The new bugs found in RedisRaft

ID Bug description

3 Process crashes when restoring the log from a snapshot stored on disk.
4 Process crashes when polling peer connections. Specifically, a segmentation failure is raised

when reading the connection information of a peer.
5 After receiving information of a newly added node, the process crashes when setting a flag

indicating the node has been successfully added.
6 Redis server crashes when checking for active client connections.
7 Process crashes when updating the log after receiving AppendEntries from the leader.

Specifically occurs when the process has to delete existing entries.
8 Process crashes when updating the snapshot index offset
9 Process crashes when sending AppendEntries and reading from a corrupt log.
10 Process crashes when updating the state to follower upon receiving a message from the

leader.
11 Process crashes when updating the state to follower upon receiving a message of a higher

term.
12 Process fails to update its current term upon receiving AppendEntries with a higher

term.
13 Process fails to update its current term upon receiving RequestVotewith a higher term.
14 Process fails to update its current term upon receiving RequestVoteResponse with

a higher term.

ID ModelFuzz Random Trace Line
1 299(20) 227(20) 368(20) 256(17)
2 10409(15) 13420(13) 8518(11) 7592(10)
3 48(20) 19(20) 32(20) 43(17)
4 10255(17) 12823(18) 11600(18) 10581(14)
5 578(20) 696(20) 945(20) 482(17)
6 8334(3) - - 17784(1)
7 6925(1) 14345(4) - 6512(2)
8 - - 16275(1) -
9 11155(16) 12449(12) 12766(13) 15157(13)
10 11748(2) 6598(3) 18001(1) 9680(2)
11 12031(4) 14041(4) 12158(8) 12261(9)
12 5709(1) 11832(2) 16097(1) -
13 6563(1) - - -
14 862(1) - - -

Table 5.4: The number of RedisRaft tests for the first occurrences of the bugs using different
guidance strategies.
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ID Random Trace Line
1 0.364 0.504 0.462
2 0.641 0.412 0.373
3 0.373 0.433 0.443
4 0.559 0.569 0.563
5 0.545 0.455 0.522
6 1.000 1.000 1.000

7 0.750 1.000 0.500
8 N/A 0.000 N/A
9 0.547 0.567 0.611

10 0.167 1.000 0.250
11 0.563 0.531 0.500
12 1.000 1.000 1.000

13 1.000 1.000 1.000

14 1.000 1.000 1.000

Table 5.5: Pairwise Â12 statistic results against ModelFuzz.

Method Mean ± std CIl CIu

ModelFuzz 7494 ± 5742 3922 11066
Line 11454 ± 7675 7881 15025

Random 11890 ± 7377 8318 15462
Trace 12626 ± 7520 9054 16198

(a)

4000 6000 8000 10000 12000 14000 16000
Trace

Random

Line

ModelFuzz
95.0% Confidence Intervals of the Mean

(b)

Figure 5.6: (a) Mean, standard deviation, lower confidence interval (CIl), and upper con-
fidence interval values (CIu) of the first iteration to find a bug for all approaches. (b) The
Tukey HSD test plot for all approaches.

faster than all other guidance approaches, {2, 7, 9, 10} statistically significantly faster than
some of the approaches, and comparably faster for the remainder. While this indicates its
ability to detect bugs faster, the Â12 results do not draw clear conclusions on the statistical
significance.

Moreover, we test for statistical significance across all bugs in the mean iterations to find
the bugs. Since we compare more than two approaches and the number of iterations for all
bugs are normal and homoscedastic, we use repeated measures ANOVA [Gir92] as omnibus
tests and post-hoc Tukey HSD [Tuk49] for assessing overall significance. We reject the
null hypothesis (p = 0.008) of the repeated measure ANOVA, as there is a statistically
significant difference between the mean values of the approaches. Overall, the tests show
that ModelFuzz statistically significantly detects bugs faster.

Figure 5.6a reports themean, standard deviation, and confidence intervals for all approaches,
and Figure 5.6b illustrates the Tukey HSD results for all approaches. We can observe that
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the mean iteration to detect a bug for ModelFuzz lies outside of the other approaches. This
suggests that the differences between ModelFuzz and all of the remaining approaches are
statistically significant, whereas there is no significant difference between random explo-
ration, line coverage, and trace coverage guidance. Note that we perform ANOVA and
post-hoc Tukey HSD tests only for RedisRaft, as we analyze numerous bugs with which we
could form a sample set.

5.5 Discussion and Perspectives

Fuzzing.

Coverage-guided fuzzing [BPR16; LS18; Zel+19; Man+21; Ba+22; Heu+22] has been exten-
sively studied for test input generation for sequential programs. Recent fuzzing techniques
target the generation of different types of program inputs [GHP20; DGZ21; SZ22] and im-
prove the performance of the fuzzer [BMC20; STS23]. Extensions of American Fuzzy Lop
(AFL) [Zal] such as AFLNet [PBR20], StateAFL [Nat22] test communication protocols by
mutating structured message inputs guided by the states explored. Different from test input
fuzzing, utilize the fuzzing approach to generate event schedules.
Fuzzing concurrent and distributed systems.

Fuzzing methods for multithreaded concurrency guide the tests by monitoring races and
synchronization events [Sen08; WSG11; Yu+12], execution states caused by thread inter-
leavings [Che+20], coverage of concurrent call pairs [Jia+22], and recently, using the reads-
from relation between the memory access operations [Wol+]. These methods are designed
for multithreaded programs, and they do not target distributed concurrency.
Recent testing techniques for distributed systems learn from the set of explored executions
and adapt reinforcement learning or fuzzing approaches to incorporate feedback informa-
tion into the generation of new tests. QL [Muk+20] uses reinforcement learning to guide
the exploration to unexplored parts of the execution space to improve coverage. Evolu-
tionary search-based testing of distributed systems [MOP23] direct the exploration toward
specific parts of the search space defined by a fitness function. CrashFuzz [Gao+23] adopts
coverage-guided fuzzing to inject faults into distributed system executions, i.e., it injects
crashes or restarts using structural code coverage information as program feedback. Mal-
lory [Men+23a] builds on Jepsen [Kin22] and leverages reinforcement learning to guide
the test generation of the fuzzer and uses event timeline abstraction (close to traces) as the
feedback information to guide the test generation. Different from structural code or trace
guidance, ModelFuzz uses guidance from the abstract system model.
Model-based testing.

Model-based testing uses formal models (e.g., TLA+ specifications) to exhaustively enu-
merate system executions and enforce them on the implementation. Its applications include
testing application programming interfaces [Art+13], fragments of HTTP protocol [LPZ21]
and implementation of MongoDB [SDH20]. Protocol fuzzers DTLS-Fuzzer [Fit+22] and
EDHOC-Fuzzer [ST23] use model learning to generate a state machine model of the pro-
tocol implementations which can be used for model-based testing. Recent work Mocket
[Wan+23] adopts model-based testing to test distributed system implementations. Mocket
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uses the paths in themodel’s state space graph as test cases, and it enforces the system under
test to run the sequence of actions generated on the system’s model on the corresponding
states and actions in the implementation. To achieve that, it requires a heavy annotation
and instrumentation of the system’s source code to mark the variables and messages asso-
ciated with the system’s model variables and actions. Our evaluation does not empirically
compare to Mocket since we do not have the annotations to map the source codes of the
systems under test to the TLA+ specifications.
ModelFuzz conceptually differs frommodel-based testing, as it performs an unconstrained
exploration of the implementation guided by the abstract model. Model-based testing gen-
erates test cases using the paths in the model, and hence, it does not cover parts of the
implementation that are abstracted away in the model. In contrast, model-guided fuzzing
explores the executions of the implementation, including those not captured by themodel.
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Chapter 6

Conclusion and Future Work

In this thesis, we contribute to the growing corpus of automated testing techniques to en-
sure reliability of distributed systems implementations. Our contributions derive intuitions
from unit testing, reinforcement learning and fuzzing techniques to develop new algorithms
for effective biased exploration and to bridge the gap between the model and the implemen-
tation.

Contributions

Distributed systems suffer from a state explosion due to many possible inter-leavings of
messages exchanged. Furthermore, implementation details which are typically hidden from
the protocol models exacerbate the problem. While many techniques and heuristics have
been developed to traverse the state space effectively, very few approaches explore the
direction of biased exploration aided by the developer.
We developed two new techniques - Netrix and WaypointRL - that allow a developer
testing the implementation to direct the exploration toward specific parts.
In Chapter 3, we introduced Netrix which derives intuition from unit testing to develop
a runtime and domain-specific language (DSL) to write unit tests for distributed systems.
Netrix, while relying on an existing exploration technique such as PCTCP, allows the de-
veloper to write unit tests to bias the exploration. In effect, the developer operates on a
spectrum. On one end, a skilled developer familiar with the protocol model and the imple-
mentation can craft explicit and detailed executions - using Netrix filters - and check for
safety assertions. On the other end, the developer can rely completely on the underlying
exploration for a fully automatic and unbiased exploration.
While the filters are easy to write, they require reasoning about the contents and order of
specificmessages or events in the execution. As a result, the filters can become cumbersome
to write. To tackle the challenge, we introduced a syntactic notion of filter distance to
measure the necessity of a filter in a unit test while relying on PCTCP as the underlying
exploration algorithm.
Alternatively, to make it easier for the developer to bias exploration, we introduced Way-
pointRL in Chapter 4. WaypointRL relies on Reinforcement Learning to automatically

93



explore the state space and bias based on developer input. With WaypointRL, the devel-
oper defines a sequence of state predicates that lead to a target state space. Internally, the
predicates determine rewards that automatically bias the exploration towards the target
predicate. The predicates are high-level compared to Netrix filters and are easier to write.

WaypointRL uses BonusMaxRL which is based on theoretically optimal reward-free Q
learning algorithm UCBZero. Our initial experiments revealed that UCBZero fails to per-
form in practice. Therefore, motivating the need for BonusMaxRL. We borrowed the idea
of a decaying reward from UCBZero and optimized it for better performance for practical
exploration of the state space of a distributed system.

We demonstrated the effectiveness of Netrix andWaypointRL on realistic and production-
ready benchmarks to show that exploration can be effectively biased to uncover new bugs.
Both Netrix and WaypointRL, require user input to bias exploration - filters for Netrix
and waypoints for WaypointRL. We provided guidelines to derive user input from the pro-
tocol model. However, both techniques do not rely explicitly on the model to test the im-
plementation.

In Chapter 5, we addressed this gap between the model and the implementation by devel-
oping a new fuzzing-based algorithm ModelFuzz which guides the test input generation
using a traditional fuzzing approach while relying on the model state for coverage. We
showed that existing notions of coverage are insufficient using real-world benchmarks.
Furthermore, we showed that high coverage of the model translates to better bug-finding
capabilities over the implementation.

Future directions

Throughout the research, we identify several interesting directions of research. We list
them below:

• While writing filters for Netrix unit tests or waypoints for WaypointRL, it is clear
that the inputs to these algorithms can be derived from the protocol model. One
possible extension to this work would be to develop a methodology or synthesis pro-
cedure to write Netrix filters or WaypointRL waypoints given a protocol model.
With such a procedure, we will be addressing the gap currently filled by ModelFuzz
and other model based testing approaches.

• WaypointRL and BonusMaxRL are based on theoretically optimal algorithms. How-
ever, it remains unknown if the optimal policies translate to probabilistic guarantees
on visiting any given state.

• ModelFuzz employs a random input generation mechanism. Given the effective-
ness of WaypointRL, ModelFuzz could be improved by leveraging “learning” based
algorithms such as reinforcement learning to better generate inputs to test.

• To guide the input generation of ModelFuzz, we rely on an explicit state model
checker (TLC) for the models. However, it remains to be seen if a symbolic model
checker in the style of Concolic testing [GKS05] would achieve better coverage.

• For a given concrete distributed system implementation, WaypointRL and Model-
Fuzz are effective under an abstraction of the state space. For example, with raft
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implementations, we abstract away the term number of each process when present-
ing the state to RL or when measuring the coverage over abstract states. In general,
one can ask - Is it possible to synthesize the abstraction for a protocol that ensures
goal coverage with WaypointRL and meaningful state guidance with ModelFuzz?
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